Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cancer Res ; 11(12): 5951-5964, 2021.
Article in English | MEDLINE | ID: mdl-35018235

ABSTRACT

Patients with estrogen receptor (ER) α-negative breast tumors have a poor prognosis and are not suitable for hormone therapy. Previously, we demonstrated that calcitriol, the active metabolite of vitamin D, induces ERα expression and re-establishes the response to antiestrogens in ER-negative breast cancer cells. However, the mechanisms involved in this process have not been elucidated. Therefore, the present study was undertaken to investigate the mechanisms implicated in the calcitriol-induced ERα expression in ER-negative breast cancer cells. Using EMSA and ChIP assays, we found that the calcitriol/vitamin D receptor (VDR)/retinoic X receptor (RXR) complex binds to putative vitamin D response elements (VDREs) in the ERα gene promoter region. In addition, we established by a fluorometric assay that calcitriol decreased DNA-methyltransferase and histone deacetylase activities. Flow cytometry and qPCR analyses showed that co-treatment of calcitriol with inhibitors of the histone deacetylase and DNA methyltransferase, and genistein significantly increased ERα expression, compared to that observed with the compounds alone. In conclusion, the calcitriol-dependent ERα induction in ER-negative breast cancer cells results from binding of the VDR-RXR complex to VDREs in the ERα gene promoter region, including the downregulation of enzymes with chromatin-remodeling activities. These results may bring forth novel mechanistic knowledge into the actions of calcitriol in ERα-negative breast cancer.

2.
Am J Physiol Endocrinol Metab ; 320(1): E102-E112, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33225719

ABSTRACT

Carbohydrate responsive element-binding protein (ChREBP) has been identified as a primary transcription factor that maintains energy homeostasis through transcriptional regulation of glycolytic, lipogenic, and gluconeogenic enzymes in response to a high-carbohydrate diet. Amino acids are important substrates for gluconeogenesis, but nevertheless, knowledge is lacking about whether this transcription factor regulates genes involved in the transport or use of these metabolites. Here, we demonstrate that ChREBP represses the expression of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) in response to a high-sucrose diet in rats by binding to a carbohydrate response element (ChoRE) site located -160 bp upstream of the transcriptional start site in the SNAT2 promoter region. Additionally, immunoprecipitation assays revealed that ChREBP and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) interact with each other, as part of the complex that repress SNAT2 expression. The interaction between these proteins was confirmed by an in vivo chromatin immunoprecipitation assay. These findings suggest that glucogenic amino acid uptake by the liver is controlled by ChREBP through the repression of SNAT2 expression in rats consuming a high-carbohydrate diet.NEW & NOTEWORTHY This study highlights the key role of carbohydrate responsive element-binding protein (ChREBP) in the fine-tuned regulation between glucose and amino acid metabolism in the liver via regulation of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) expression after the consumption of a high-carbohydrate diet. ChREBP binds to a carbohydrate response element (ChoRE) site in the SNAT2 promoter region and recruits silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor to reduce SNAT2 transcription. This study revealed that ChREBP prevents the uptake of glucogenic amino acids upon the consumption of a high-carbohydrate diet.


Subject(s)
Amino Acid Transport System A/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Dietary Carbohydrates/pharmacology , Nuclear Receptor Co-Repressor 2/metabolism , Amino Acid Transport System A/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Blood Glucose/analysis , Blood Glucose/metabolism , Chromatin Immunoprecipitation , Diet , Down-Regulation , Hepatocytes/metabolism , Male , Nuclear Receptor Co-Repressor 2/genetics , Primary Cell Culture , Rats , Rats, Wistar , Sucrose/pharmacology , Transcription, Genetic/drug effects
3.
Front Nutr ; 4: 15, 2017.
Article in English | MEDLINE | ID: mdl-28536692

ABSTRACT

The hedonic component of the feeding behavior involves the mesolimbic reward system and resembles addictions. Nowadays, the excessive consumption of sucrose is considered addictive. The Wistar-Kyoto (WKY) rat strain is prone to develop anxiety and addiction-like behavior; nevertheless, a lack of information regarding their vulnerability to develop sugar binging-like behavior (SBLB) and how it affects the reward system persist. Therefore, the first aim of the present study was to compare the different predisposition of two rat strains, Wistar (W) and WKY to develop the SBLB in female and male rats. Also, we studied if the SBLB-inducing protocol produces changes in anxiety-like behavior using the plus-maze test (PMT) and, analyzed serotonin (5-HT) and noradrenaline (NA) concentrations in brain areas related to anxiety and ingestive behavior (brain stem, hypothalamus, nucleus accumbens, and amygdala). Finally, we evaluated whether fluoxetine, a drug that has been effective in reducing the binge-eating frequency, body weight, and severity of binge eating disorder, could also block this behavior. Briefly, WKY and W female rats were exposed to 30% sucrose solution (2 h, 3 days/week for 4 weeks), and fed up ad libitum. PMT was performed between the last two test periods. Immediately after the last test where sucrose access was available, rats were decapitated and brain areas extracted for high-performance liquid chromatography analysis. The results showed that both W and WKY female and male rats developed the SBLB. WKY rats consumed more calories and ingested a bigger amount of sucrose solution than their W counterpart. This behavior was reversed by using fluoxetine, rats exposed to the SBLB-inducing protocol presented a rebound effect during the washout period. On female rats, the SBLB-inducing protocol induced changes in NA concentrations on WKY, but not on W rats. No changes were found in 5-HT levels. Finally, animals that developed SBLB showed increased anxiety-like behavior in the PMT. In conclusion, WKY female rats can be considered as a more susceptible rat strain to develop SBLB.

4.
Biochem Biophys Res Commun ; 458(4): 751-6, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25686501

ABSTRACT

Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and other proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions.


Subject(s)
Fatty Liver/metabolism , Kruppel-Like Transcription Factors/metabolism , PPAR gamma/genetics , Palmitic Acid/metabolism , Proto-Oncogene Proteins/metabolism , Fatty Liver/genetics , Gene Expression Regulation , Hep G2 Cells , Humans , Kruppel-Like Factor 6 , Kruppel-Like Transcription Factors/genetics , PPAR gamma/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Transcriptional Activation , Triglycerides/metabolism
5.
Life Sci ; 76(22): 2569-79, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15769481

ABSTRACT

Current data suggests that hepatocyte apoptosis is an essential feature contributing to several chronic liver diseases. It has been shown that IL-10 has diverse and potentially pleiotropic actions that suggest that it may have a direct effect on apoptosis. It has been established that NF-kappaB activation is essential to protect hepatocytes from apoptosis. The purpose of the present work is to evaluate the effect of the anti-inflammatory cytokine, IL-10 on the activation of NF-kappaB in primary cultured rat hepatocytes and hepatoblastoma (HepG2) cell line and explore its consequences on apoptosis. Apoptosis was induced by TNF-alpha and cicloheximide in HepG2 hepatoblastoma cells and by ethanol and a glutathione depletor in primary cultured rat hepatocytes. NF-kappaB activation was determined by EMSA. IL-10 increased ethanol induced apoptosis in primary culture rat hepatocytes (28%). These effects were enhanced when the cells were pre-treated with IL-10 under conditions of oxidative stress (glutathione depletion). The effects of IL-10 on primary cultured hepatocytes were independent of NF-kappaB activation. When apoptosis was induced by cicloheximide and TNF-alpha in hepatoblastoma cells, pretreatment with IL-10 was accompanied by a decrease of 38% in apoptosis. IL-10 did not have any effect on the signaling cascade of apoptosis but caused a significant increase in NF-kappaB activation. When NF-kappaB activation was inhibited by sulfazalazine the decrease in apoptosis was reversed. The present study demonstrates the importance of differential cell marking when trying to characterize the effects of cytokines in their contribution to liver cell apoptosis. The study provides insight into the mechanisms by which IL-10 affects apoptosis through a differential effect on NF-kappaB activation.


Subject(s)
Apoptosis/drug effects , Hepatoblastoma/physiopathology , Hepatocytes/physiology , Interleukin-10/pharmacology , Liver Neoplasms/physiopathology , NF-kappa B/metabolism , Animals , Apoptosis/physiology , Cell Line, Tumor , Chronic Disease , Cycloheximide/pharmacology , Ethanol/pharmacology , Hepatoblastoma/pathology , Hepatocytes/pathology , Humans , Liver Diseases/pathology , Liver Diseases/physiopathology , Liver Neoplasms/pathology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Protein Synthesis Inhibitors/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology , Solvents/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...