Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(6): e38566, 2012.
Article in English | MEDLINE | ID: mdl-22685584

ABSTRACT

BACKGROUND: Retinotopic projection onto the tectum/colliculus constitutes the most studied model of topographic mapping and Eph receptors and their ligands, the ephrins, are the best characterized molecular system involved in this process. Ephrin-As, expressed in an increasing rostro-caudal gradient in the tectum/colliculus, repel temporal retinal ganglion cell (RGC) axons from the caudal tectum and inhibit their branching posterior to their termination zones. However, there are conflicting data regarding the nature of the second force that guides nasal axons to invade and branch only in the caudal tectum/colliculus. The predominant model postulates that this second force is produced by a decreasing rostro-caudal gradient of EphA7 which repels nasal optic fibers and prevents their branching in the rostral tectum/colliculus. However, as optic fibers invade the tectum/colliculus growing throughout this gradient, this model cannot explain how the axons grow throughout this repellent molecule. METHODOLOGY/PRINCIPAL FINDINGS: By using chicken retinal cultures we showed that EphA3 ectodomain stimulates nasal RGC axon growth in a concentration dependent way. Moreover, we showed that nasal axons choose growing on EphA3-expressing cells and that EphA3 diminishes the density of interstitial filopodia in nasal RGC axons. Accordingly, in vivo EphA3 ectodomain misexpression directs nasal optic fibers toward the caudal tectum preventing their branching in the rostral tectum. CONCLUSIONS: We demonstrated in vitro and in vivo that EphA3 ectodomain (which is expressed in a decreasing rostro-caudal gradient in the tectum) is necessary for topographic mapping by stimulating the nasal axon growth toward the caudal tectum and inhibiting their branching in the rostral tectum. Furthermore, the ability of EphA3 of stimulating axon growth allows understanding how optic fibers invade the tectum growing throughout this molecular gradient. Therefore, opposing tectal gradients of repellent ephrin-As and of axon growth stimulating EphA3 complement each other to map optic fibers along the rostro-caudal tectal axis.


Subject(s)
Axons/metabolism , Receptor, EphA3/biosynthesis , Retinal Ganglion Cells/metabolism , Tectum Mesencephali/metabolism , Animals , Axons/physiology , Blotting, Western , Cells, Cultured , Chick Embryo , Chickens , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunohistochemistry , Microscopy, Confocal , Phosphorylation , Receptor, EphA3/genetics , Receptor, EphA3/metabolism , Retina/embryology , Retina/growth & development , Retina/metabolism , Superior Colliculi/embryology , Superior Colliculi/growth & development , Superior Colliculi/metabolism , Tectum Mesencephali/embryology , Tectum Mesencephali/growth & development , Time Factors , Time-Lapse Imaging , Tissue Culture Techniques , Tyrosine/metabolism , Visual Pathways
2.
J Morphol ; 272(6): 675-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21484853

ABSTRACT

Development is often described as temporal sequences of developmental stages (DSs). When tables of DS are defined exclusively in the time domain they cannot discriminate histogenetic differences between different positions along a spatial reference axis. We introduce a table of DSs for the developing chick optic tectum (OT) based on time- and space-dependent changes in quantitative morphometric parameters, qualitative histogenetic features and immunocytochemical pattern of several developmentally active molecules (Notch1, Hes5, NeuroD1, ß-III-Tubulin, synaptotagmin-I and neurofilament-M). Seven DSs and four transitional stages were defined from ED2 to ED12, when the basic OT cortical organization is established, along a spatial developmental gradient axis extending between a zone of maximal and a zone of minimal development. The table of DSs reveals that DSs do not only progress as a function of time but also display a spatially organized propagation along the developmental gradient axis. The complex and dynamic character of the OT development is documented by the fact that several DSs are simultaneously present at any ED or any embryonic stage. The table of DSs allows interpreting how developmental cell behaviors are temporally and spatially organized and explains how different DSs appear as a function of both time and space. The table of DSs provides a reference system to characterize the OT corticogenesis and to reliably compare observations made in different specimens.


Subject(s)
Superior Colliculi/cytology , Superior Colliculi/embryology , Animals , Chick Embryo , Immunohistochemistry , Neurons/chemistry , Neurons/cytology , Superior Colliculi/chemistry
3.
Brain Res Bull ; 79(5): 227-47, 2009 Jun 30.
Article in English | MEDLINE | ID: mdl-19480983

ABSTRACT

Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.


Subject(s)
Ephrins/metabolism , Receptors, Eph Family/metabolism , Retina/physiology , Superior Colliculi/physiology , Visual Pathways/physiology , Animals , Axons/physiology , Nerve Regeneration/physiology , Neural Pathways/growth & development , Neural Pathways/physiology , Neurogenesis , Neuronal Plasticity/physiology , Retina/anatomy & histology , Retina/growth & development , Retinal Ganglion Cells/physiology , Signal Transduction , Superior Colliculi/anatomy & histology , Superior Colliculi/growth & development , Synapses/physiology , Visual Pathways/anatomy & histology , Visual Pathways/growth & development
4.
J Comp Neurol ; 494(6): 1007-30, 2006 Feb 20.
Article in English | MEDLINE | ID: mdl-16385490

ABSTRACT

The chick retinotectal system is a suitable model to investigate the mechanisms involved in the establishment of synaptic connections in whose refinement nitric oxide was implicated. The purpose of this work was to describe the developmental pattern of the nitric oxide synthase (NOS)-positive neurons as well as to determine if it is sensitive to changes in visual stimulation. The NADPH-diaphorase histochemical method was used to describe and quantify NOS neurons in normally stimulated and subnormally stimulated chickens. Nine types of NOS neurons were identified; seven of them express NOS until adulthood, while two of them show only a transient expression. The developmental pattern of NOS neurons follows the process of laminar segregation. It can be divided into three phases. The first includes the onset of NOS expression in periventricular neurons and the formation of a deep network of NOS fibers during early development. These neurons do not show any significant change in subnormally stimulated animals. The second phase includes the appearance of two transient NOS populations of bipolar neurons that occupy the intermediate layers during the optic fibers ingrowth. One of them significantly changes in subnormally stimulated chicks. The third phase occurs when the transitory expression of bipolar neurons decreases. It includes NOS expression in six neuronal populations that innervate the superficial retinorecipient layers. Most of these cells suffer plastic changes in subnormally stimulated chicks. The diversity of neuronal types with regard to their morphology, location, and sensitivity to visual stimulation strongly suggests that they serve different functions.


Subject(s)
Chick Embryo/anatomy & histology , NADPH Dehydrogenase/metabolism , Neurons/physiology , Photic Stimulation , Superior Colliculi , Animals , Cell Shape , Neurons/cytology , Neurons/enzymology , Nitric Oxide Synthase/metabolism , Superior Colliculi/anatomy & histology , Superior Colliculi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...