Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(5): 2285-2291, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36633266

ABSTRACT

One-dimensional (1D) metal-organic (MO) nanowires are captivating from fundamental and technological perspectives due to their distinctive magnetic and electronic properties. The solvent-free synthesis of such nanomaterials on catalytic surfaces provides a unique approach for fabricating low-dimensional single-layer materials with atomic precision and low amount of defects. A detailed understanding of the electronic structure of MO polymers such as band gap and dispersive bands is critical for their prospective implementation into nanodevices such as spin sensors or field-effect transistors. Here, we have performed the on-surface reaction of quinoidal ligands with single cobalt atoms (Co-QDI) on a vicinal Au(788) surface in ultra-high vacuum. This procedure promotes the growth and uniaxial alignment of Co-QDI MO chains along the surface atomic steps, while permitting the mapping of their electronic properties with space-averaging angle-resolved photoemission spectroscopy. In the direction parallel to the principal chain axis, a well-defined 1D band structure with weakly dispersive and dispersive bands is observed, confirming a pronounced electron delocalization. Low-temperature scanning tunneling microscopy/spectroscopy delves into the atomically precise structure of the nanowires and elucidates their narrow bandgap. These findings are supported with GW0 band structure calculations showing that the observed electronic bands emanate from the efficient hybridization of Co(3d) and molecular orbitals. Our work paves the way towards a systematic search of similar 1D π-d hybridized MO chains with tunable electronic and magnetic properties defined by the transition or rare earth metal atom of choice.

2.
ACS Nano ; 11(12): 12392-12401, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29161499

ABSTRACT

The high reactivity of magnetic substrates toward molecular overlayers has so far inhibited the realization of more sophisticated on-surface reactions, thereby depriving these interfaces of a significant class of chemically tailored organics such as graphene nanoribbons, oligonuclear spin-chains, and metal-organic networks. Here, we present a multitechnique characterization of the polymerization of 4,4″-dibromo-p-terphenyl precursors into ordered poly(p-phenylene) arrays on top of the bimetallic GdAu2 surface alloy. The activation temperatures for bromine scission and subsequent homocoupling of molecular precursors were followed by temperature-dependent X-ray photoelectron spectroscopy. The structural characterizations of supramolecular and polymeric phases, performed by low-energy electron diffraction and scanning tunneling microscopy, establish an extraordinary degree of order extending into the mesoscale. Taking advantage of the high homogeneity, the electronic structure of the valence band was determined with angle-resolved photoemission spectroscopy. Importantly, the transition of localized molecular orbitals into a highly dispersive π-band, the fingerprint of successful polymerization, was observed while leaving all surface-related bands intact. Moreover, ferromagnetic ordering in the GdAu2 alloy was demonstrated for all phases by X-ray absorption spectroscopy. The transfer of well-established in situ methods for growing covalently bonded macromolecules with atomic precision onto magnetic rare-earth alloys is an important step toward toward studying and controlling intrinsic carbon- and rare-earth-based magnetism.

3.
Adv Sci (Weinh) ; 3(9): 1600187, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27711268

ABSTRACT

A trigon structure formed by submonolayer gadolinium deposition onto Au(111) is revealed as a robust growth template for Co nanodot arrays. Scanning Tunneling Microscopy and X-Ray Magnetic Circular Dichroism measurements evidence that the Co nanoislands behave as independent magnetic entities with an out-of-plane easy axis of anisotropy and enhanced magnetic anisotropy values, as compared to other self-organized Co nanodot superlattices. The large strain induced by the lattice mismatch at the interface between Co and trigons is discussed as the main reason for the increased magnetic anisotropy of the nanoislands.

4.
ACS Nano ; 8(12): 12786-95, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25426520

ABSTRACT

The electronic character of a π-conjugated molecular overlayer on a metal surface can change from semiconducting to metallic, depending on how molecular orbitals arrange with respect to the electrode's Fermi level. Molecular level alignment is thus a key property that strongly influences the performance of organic-based devices. In this work, we report how the electronic level alignment of copper phthalocyanines on metal surfaces can be tailored by controlling the substrate work function. We even show the way to finely tune it for one fixed phthalocyanine-metal combination without the need to intercalate substrate-functionalizing buffer layers. Instead, the work function is trimmed by appropriate design of the phthalocyanine's supramolecular environment, such that charge transfer into empty molecular levels can be triggered across the metal-organic interface. These intriguing observations are the outcome of a powerful combination of surface-sensitive electron spectroscopies, which further reveal a number of characteristic spectroscopic fingerprints of a lifted LUMO degeneracy associated with the partial phthalocyanine charging.

5.
ACS Nano ; 7(8): 6914-20, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23883347

ABSTRACT

The molecule/metal interface is the key element in charge injection devices. It can be generally defined by a monolayer-thick blend of donor and/or acceptor molecules in contact with a metal surface. Energy barriers for electron and hole injection are determined by the offset from HOMO (highest occupied) and LUMO (lowest unoccupied) molecular levels of this contact layer with respect to the Fermi level of the metal electrode. However, the HOMO and LUMO alignment is not easy to elucidate in complex multicomponent, molecule/metal systems. We demonstrate that core-level photoemission from donor-acceptor/metal interfaces can be used to straightforwardly and transparently assess molecular-level alignment. Systematic experiments in a variety of systems show characteristic binding energy shifts in core levels as a function of molecular donor/acceptor ratio, irrespective of the molecule or the metal. Such shifts reveal how the level alignment at the molecule/metal interface varies as a function of the donor-acceptor stoichiometry in the contact blend.

6.
ACS Nano ; 4(3): 1603-11, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20146459

ABSTRACT

A new class of nanostructured templates is obtained by submitting Au111 films to high-temperature vapor deposition of Gd in ultrahigh vacuum. In a low coverage regime, Gd atoms are embedded in the topmost Au layer, inducing a structural transformation of the herringbone reconstruction to create a network of trigons. At higher dose, the reactive deposition of Gd leads to the formation of an atomically perfect GdAu2 surface compound characterized by a long-range periodic Moire pattern. Both the trigon and Moire lattices are highly ordered nanostructures, which turned out to be robust templates to grow metal nanodots. As a test example, Co was deposited at room temperature, forming uniform dots that faithfully arrange by following the underlying trigons or Moire periodicity. For the latter, one can achieve nanodot arrays that exhibit record areal density.

SELECTION OF CITATIONS
SEARCH DETAIL
...