Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 256(Pt 1): 128273, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000584

ABSTRACT

Olive leaf, as an important by-product of olive farming, is generated from the pruning and harvesting of olive trees and represents >10 % of the total olive weight. The present study was conducted to evaluate the composition, functional and structural characterizations, as well as the in vitro digestibility of olive leaf proteins isolated from ultrasonic-assisted extraction, comparing to classical and industrial techniques. The ultrasound-assisted extraction of olive leaf protein was optimized by the simultaneous maximization of the yield and purity of protein using a Box-Behnken design (BBD) of response surface methodology (RSM). The results indicated that the optimal extraction conditions were as follows: pH of 10.99, temperature of 40.48 °C, sonication time of 47.25 min, and solvent/solid ratio of 24.08 mL/g. Under these conditions, the extraction yield and protein content were 11.67 and 51.2 %, respectively, which were significantly higher than those obtained by the conventional techniques. Regarding the functionality of protein, extraction technique had significant impacts on the structural and functional properties of proteins. In general, ultrasound assisted extraction had higher solubility, and better foaming and thermal properties and in vitro digestibility but lower emulsifying stability and fluid binding capacity compared to conventional ones. Ultrasound-assisted alkaline extraction has great potential to produce edible olive leaf protein with modified functional properties that can be used for various aims in the food applications.


Subject(s)
Olea , Olea/chemistry , Solvents/chemistry , Temperature , Plant Leaves/chemistry
2.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429286

ABSTRACT

Plant-based proteins are gaining in attraction compared with animal-based proteins due to their superior ethical profiles, growing concerns on the part of various organizations about animal health and welfare, and increased global greenhouse-gas emissions in meat production. In this study, the response surface methodology (RSM) using a Box-Behnken design (BBD) was applied to optimize the ultrasound-assisted alkaline extraction of cherimoya-seed proteins as valuable by-products. The effects of three pH, temperature, and time factors on the protein-extraction yield and protein content were investigated. The pH at 10.5 and temperature of 41.8 °C for 26.1 min were considered the optimal ultrasound-assisted alkaline-extraction conditions since they provided the maximum extraction yield (17.3%) and protein content (65.6%). An established extraction technique was employed to enhance the cherimoya-seed protein yield, purity, and functional properties. A thermogravimetric analysis (TGA) of the samples showed that the ultrasound-assisted alkaline extraction improved the thermal stability of the protein concentrate.

3.
Biomolecules ; 12(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36139150

ABSTRACT

An ultrasound-assisted method was used for the extraction of phenolics from defatted black cumin seeds (Nigella sativa L.), and the effects of several extraction factors on the total phenolic content and DPPH radical scavenging activity were investigated. To improve the extraction efficiency of phenolics from black cumin seed by ultrasonic-assisted extraction, the optimal extraction conditions were determined as follows: ethanol concentration of 59.1%, extraction temperature of 44.6 °C and extraction time of 32.5 min. Under these conditions, the total phenolic content and DPPH radical scavenging activity increased by about 70% and 38%, respectively, compared with conventional extraction. Furthermore, a complementary quantitative analysis of individual phenolic compounds was carried out using the HPLC-UV technique. The phenolic composition revealed high amounts of epicatechin (1.88-2.37 mg/g) and rutin (0.96-1.21 mg/g) in the black cumin seed extracts. Ultrasonic-assisted extraction can be a useful extraction method for the recovery of polyphenols from defatted black cumin seeds.


Subject(s)
Catechin , Cuminum , Nigella sativa , Antioxidants/pharmacology , Catechin/analysis , Ethanol , Nigella sativa/chemistry , Phenols/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Rutin/analysis , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...