Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Exp Cell Res ; 338(2): 251-60, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26302264

ABSTRACT

Cellular levels of inhibitor of apoptosis (IAP) proteins are elevated in multiple human cancers and their activities often play a part in promoting cancer cell survival by blocking apoptotic pathways, controlling signal transduction pathways and contributing to resistance. These proteins function through interactions of their BIR (baculoviral IAP repeat) protein domains with pathway components and these interactions are endogenously antagonized by Smac/Diablo (second mitochondrial activator of caspases/direct IAP binding protein with low isoelectric point). This report describes development of synthetic smac mimetics (SM) and compares their binding, antiproliferative and anti-tumor activities. All dimeric antagonists inhibit in vitro smac tetrapeptide binding to recombinant IAP proteins, rescue IAP-bound caspase-3 activity and show anti-proliferative activity against human A875 melanoma cells. One heterodimeric SM, SM3, binds tightly to IAP proteins in vitro and slowly dissociates (greater than two hours) from these protein complexes compared to the other antagonists. In addition, in vitro SM anti-proliferation potency is influenced by ABCB1 transporter (ATP-binding cassette, sub-family B; MDR1, P-gp) activities and one antagonist, SM5, does not appear to be an ABCB1 efflux pump substrate. All dimeric smac mimetics inhibit the growth of human melanoma A875 tumors implanted in athymic mice at well-tolerated doses. One antagonist, SM4, shows broad spectrum in vivo anti-tumor activity and modulates known pharmacodynamic markers of IAP antagonism. These data taken together demonstrate the range of diverse dimeric IAP antagonist activities and supports their potential as anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Transport/drug effects , Caspase 3/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mitochondrial Proteins/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Biomimetics/methods , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , HCT116 Cells , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Melanoma/drug therapy , Melanoma/metabolism , Mice, Inbred BALB C , Mice, Nude , Protein Binding/drug effects , Protein Structure, Tertiary/drug effects
2.
Anal Biochem ; 392(1): 59-69, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19497292

ABSTRACT

Eg5 is a kinesin whose inhibition leads to cycle arrest during mitosis, making it a potential therapeutic target in cancers. Circular dichroism and isothermal titration calorimetry of our pyrrolotriazine-4-one series of inhibitors with Eg5 motor domain revealed enhanced binding in the presence of adenosine 5'-diphosphate (ADP). Using this information, we studied the interaction of this series with ADP-Eg5 complexes using a thermal shift assay. We measured up to a 7 degrees C increase in the thermal melting (T(m)) of Eg5 for an inhibitor that produced IC(50) values of 60 and 130 nM in microtubule-dependent adenosine triphosphatase (ATPase) and cell-based cytotoxicity assays, respectively. In general, the inhibitor potency of the pyrrolotriazine-4-one series in in vitro biological assays correlated with the magnitude of the thermal stability enhancement of ADP-Eg5. The thermal shift assay also confirmed direct binding of Eg5 inhibitors identified in a high-throughput screen and demonstrated that the thermal shift assay is applicable to a range of chemotypes and can be useful in evaluating both potent (nM) and relatively weakly binding (microM) leads. Overall, the thermal shift assay was found to be an excellent biophysical method for evaluating direct binding of a large number of compounds to Eg5, and it complemented the catalytic assay screens by providing an alternative determination of inhibitor potency.


Subject(s)
Biochemistry/methods , Kinesins/chemistry , Pyrroles/analysis , Pyrroles/chemistry , Triazines/analysis , Triazines/chemistry , Adenosine Diphosphate/metabolism , Biophysical Phenomena , Calorimetry , Cell Line, Tumor , Circular Dichroism , Humans , Kinesins/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...