Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 83(10): 5539-5545, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29668277

ABSTRACT

A kinetic study on the reactions of the cumyloxyl radical (CumO•) with a series of alkanols and alkanediols has been carried out. Predominant hydrogen atom transfer (HAT) from the α-C-H bonds of these substrates, activated by the presence of the OH group, is observed. The comparable kH values measured for ethanol and 1-propanol and the increase in kH measured upon going from 1,2-diols to structurally related 1,3- and 1,4-diols is indicative of ß-C-H deactivation toward HAT to the electrophilic CumO•, determined by the electron-withdrawing character of the OH group. No analogous deactivation is observed for the corresponding diamines, in agreement with the weaker electron-withdrawing character of the NH2 group. The significantly lower kH values measured for reaction of CumO• with densely oxygenated methyl pyranosides as compared to cyclohexanol derivatives highlights the role of ß-C-H deactivation. The contribution of torsional effects on reactivity is evidenced by the ∼2-fold increase in kH observed upon going from the trans isomers of 4- tert-butylcyclohexanol and 1,2- and 1,4-cyclohexanediol to the corresponding cis isomers. These results provide an evaluation of the role of electronic and torsional effects on HAT reactions from alcohols and diols to CumO•, uncovering moreover ß-C-H deactivation as a relevant contributor in defining site selectivity.

2.
J Org Chem ; 80(9): 4710-5, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25848679

ABSTRACT

Absolute rate constants for hydrogen atom transfer (HAT) from cycloalkanes and decalins to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. Very similar reactivities were observed for the C-H bonds of cyclopentane and cyclohexane, while the tertiary C-H bond of methylcyclopentane was found to be 6 times more reactive than the tertiary axial C-H bond of methylcyclohexane, pointing toward a certain extent of tertiary axial C-H bond deactivation. Comparison between the cis and trans isomers of 1,2-dimethylcyclohexane, 1,4-dimethylcyclohexane and decalin provides a quantitative evaluation of the role played by strain release in these reactions. kH values for HAT from tertiary equatorial C-H bonds were found to be at least 1 order of magnitude higher than those for HAT from the corresponding tertiary axial C-H bonds (kH(eq)/kH(ax) = 10-14). The higher reactivity of tertiary equatorial C-H bonds was explained in terms of 1,3-diaxial strain release in the HAT transition state. Increase in torsional strain in the HAT transition state accounts instead for tertiary axial C-H bond deactivation. The results are compared with those obtained for the corresponding C-H functionalization reactions by dioxiranes and nonheme metal-oxo species indicating that CumO(•) can represent a convenient model for the reactivity patterns of these oxidants.

SELECTION OF CITATIONS
SEARCH DETAIL
...