Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 63: 316-24, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25078303

ABSTRACT

This study analyses the use of the solar photo-Fenton treatment in compound parabolic collector photo-reactors at neutral pH for the inactivation of wild enteric Escherichia coli and total coliform present in secondary effluents of a municipal wastewater treatment plant (SEWWTP). Control experiments were carried out to find out the individual effects of mechanical stress, pH, reactants concentration, and UVA radiation as well as the combined effects of UVA-Fe and UVA-H2O2. The synergistic germicidal effect of solar-UVA with 50 mg L(-1) of H2O2 led to complete disinfection (up to the detection limit) of total coliforms within 120 min. The disinfection process was accelerated by photo-Fenton, achieving total inactivation in 60 min reducing natural bicarbonate concentration found in the SEWWTP from 250 to 100 mg L(-1) did not give rise to a significant enhancement in bacterial inactivation. Additionally, the effect of hydrogen peroxide and iron dosage was evaluated. The best conditions were 50 mg L(-1) of H2O2 and 20 mg L(-1) of Fe(2+). Due to the variability of the SEWWTP during autumn and winter seasons, the inactivation kinetic constant varied between 0.07 ± 0.04 and 0.17 ± 0.04 min(-1). Moreover, the water treated by solar photo-Fenton fulfilled the microbiological quality requirement for wastewater reuse in irrigation as per the WHO guidelines and in particular for Spanish legislation.


Subject(s)
Disinfectants/chemistry , Disinfection/methods , Enterobacteriaceae/drug effects , Enterobacteriaceae/radiation effects , Hydrogen Peroxide/chemistry , Iron/chemistry , Photolysis , Wastewater/analysis , Bicarbonates/analysis , Escherichia coli/drug effects , Escherichia coli/radiation effects , Seasons , Spain , Sunlight
2.
Environ Sci Pollut Res Int ; 21(16): 9522-8, 2014.
Article in English | MEDLINE | ID: mdl-24136578

ABSTRACT

A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5% in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).


Subject(s)
Biodegradation, Environmental , Pseudomonas putida/metabolism , Wastewater/chemistry , Biological Assay , Biological Oxygen Demand Analysis , Industrial Waste/analysis , Oxidation-Reduction , Pesticides/analysis , Waste Disposal, Fluid/methods , Water/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
3.
Water Res ; 46(18): 6154-62, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23021523

ABSTRACT

The photo-Fenton process is a promising alternative to classical water disinfection treatments, although information in this regard is scarce due to its operational limitations. The effect of temperature (10, 20, 30 and 40 °C) was studied on water disinfection using the photo-Fenton reaction at initial near neutral pH with resorcinol as a model of natural organic matter (NOM). Enterococcus faecalis, a Gram-positive microorganism, was selected as an indicator of wastewater faecal contamination. The individual effects of different variables involved in this process (mechanical stress, UVA, H(2)O(2), Fe(2+), H(2)O(2)/Fe(2+), UVA/Fe(2+), UVA/H(2)O(2) and UVA/H(2)O(2)/Fe(2+)) were determined. UVA and H(2)O(2) led to a 2.5-log decrease individually and the combined effect of both variables managed to disinfect up to the detection limit (i.e. from a 5.5 to a 6-log reduction) over the same treatment time. Only by adding 10 mg L(-1) of Fe(2+), the inactivation time was reduced from 120 min (H(2)O(2)/UVA) to 80 min (H(2)O(2)/UVA/Fe(2+); photo-Fenton) with 120 mg L(-1) of H(2)O(2). A higher disinfection result for E. faecalis was observed by increasing temperature according to the Arrhenius equation in the photo-Fenton process. The detection limit was not reached at 10 °C and, to achieve the detection limit at 20, 30 and 40 °C, 80, 65 and 40 min were needed, respectively. The decrease in treatment time is a key factor in applying the photo-Fenton disinfection process to a wastewater treatment plant.


Subject(s)
Disinfection/methods , Enterococcus faecalis/growth & development , Temperature , Water Purification/methods , Hydrogen-Ion Concentration , Photochemistry
4.
J Hazard Mater ; 237-238: 223-30, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-22954603

ABSTRACT

The solar photo-Fenton process is widely used for the elimination of pollutants in aqueous effluent and, as such, is amply cited in the literature. In this process, hydrogen peroxide represents the highest operational cost. Up until now, manual dosing of H(2)O(2) has led to low process performance. Consequently, there is a need to automate the hydrogen peroxide dosage for use in industrial applications. As it has been demonstrated that a relationship exists between dissolved oxygen (DO) concentration and hydrogen peroxide consumption, DO can be used as a variable in optimising the hydrogen peroxide dosage. For this purpose, a model was experimentally obtained linking the dynamic behaviour of DO to hydrogen peroxide consumption. Following this, a control system was developed based on this model. This control system - a proportional and integral controller (PI) with an anti-windup mechanism - has been tested experimentally. The assays were carried out in a pilot plant under sunlight conditions and with paracetamol used as the model pollutant. In comparison with non-assisted addition methods (a sole initial or continuous addition), a decrease of 50% in hydrogen peroxide consumption was achieved when the automatic controller was used, driving an economic saving and an improvement in process efficiency.


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Online Systems , Oxygen/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Acetaminophen/chemistry , Acetaminophen/radiation effects , Automation , Sunlight , Water Pollutants, Chemical/radiation effects , Water Purification/instrumentation
5.
J Hazard Mater ; 186(2-3): 1924-9, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21232848

ABSTRACT

The use of the solar photo-Fenton process is proposed to degrade Paracetamol in water in order to form biodegradable reaction intermediates which can be finally removed with a downstream biological treatment. Firstly, biodegradability enhancement with photo-Fenton treatment time has been evaluated; the minimum mineralization level should be at least 18.6% where Paracetamol has been degraded and biodegradability efficiency is higher than 40%. 20 mg L(-1) of Fe(2+) and 200 mg L(-1) of H(2)O(2) were selected in a lab-scale study looking at Paracetamol's degradation rate and organic carbon mineralization rate. As a result of scaling up the process at a pilot plant, 157.5 mg L(-1) of Paracetamol (∼1 mM) was treated in 25 min of photo-Fenton treatment achieving the desired biodegradability. A further economic evaluation shows how the proposed treatment strategy markedly increases plant efficiency, resulting in an 83.33% reduction in reagent cost and a 79.11% reduction in costs associated with reaction time. Total cost is reduced from 3.4502 €/m(3) to 0.7392 €/m(3).


Subject(s)
Biodegradation, Environmental , Hydrogen Peroxide/economics , Iron/economics , Medical Waste/economics , Refuse Disposal/economics , Refuse Disposal/methods , Acetaminophen/chemistry , Acetaminophen/economics , Algorithms , Chromatography, High Pressure Liquid , Colorimetry , Costs and Cost Analysis , Hydrogen Peroxide/chemistry , Indicators and Reagents , Iron/chemistry , Minerals/chemistry , Photochemistry , Pilot Projects , Pseudomonas putida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...