Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37177757

ABSTRACT

The work carried out in this paper consists of the classification of the physiological signal generated by eye movement called Electrooculography (EOG). The human eye performs simultaneous movements, when focusing on an object, generating a potential change in origin between the retinal epithelium and the cornea and modeling the eyeball as a dipole with a positive and negative hemisphere. Supervised learning algorithms were implemented to classify five eye movements; left, right, down, up and blink. Wavelet Transform was used to obtain information in the frequency domain characterizing the EOG signal with a bandwidth of 0.5 to 50 Hz; training results were obtained with the implementation of K-Nearest Neighbor (KNN) 69.4%, a Support Vector Machine (SVM) of 76.9% and Decision Tree (DT) 60.5%, checking the accuracy through the Jaccard index and other metrics such as the confusion matrix and ROC (Receiver Operating Characteristic) curve. As a result, the best classifier for this application was the SVM with Jaccard Index.


Subject(s)
Algorithms , Support Vector Machine , Humans , Electrooculography/methods , Eye Movements , Wavelet Analysis
2.
Sensors (Basel) ; 21(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502773

ABSTRACT

People with severe disabilities require assistance to perform their routine activities; a Human-Machine Interface (HMI) will allow them to activate devices that respond according to their needs. In this work, an HMI based on electrooculography (EOG) is presented, the instrumentation is placed on portable glasses that have the task of acquiring both horizontal and vertical EOG signals. The registration of each eye movement is identified by a class and categorized using the one hot encoding technique to test precision and sensitivity of different machine learning classification algorithms capable of identifying new data from the eye registration; the algorithm allows to discriminate blinks in order not to disturb the acquisition of the eyeball position commands. The implementation of the classifier consists of the control of a three-wheeled omnidirectional robot to validate the response of the interface. This work proposes the classification of signals in real time and the customization of the interface, minimizing the user's learning curve. Preliminary results showed that it is possible to generate trajectories to control an omnidirectional robot to implement in the future assistance system to control position through gaze orientation.


Subject(s)
Robotics , Algorithms , Electrooculography , Eye Movements , Humans , Machine Learning
3.
BMC Neurosci ; 19(1): 66, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30359234

ABSTRACT

BACKGROUND: Tinnitus is the perception of sound in the absence of any external acoustic stimulation. Transcranial direct current stimulation (tDCS) has shown promising though heterogeneous therapeutic outcomes for tinnitus. The present study aims to review the recent advances in applications of tDCS for tinnitus treatment. In addition, the clinical efficacy and main mechanisms of action of tDCS on suppressing tinnitus are discussed. METHODS: The study was performed in accordance with the PRISMA guidelines. The databases of the PubMed (1980-2018), Embase (1980-2018), PsycINFO (1850-2018), CINAHL, Web of Science, BIOSIS Previews (1990-2018), Cambridge Scientific Abstracts (1990-2018), and google scholar (1980-2018) using the set search terms. The date of the most recent search was 20 May, 2018. The randomized controlled trials that have assessed at least one therapeutic outcome measured before and after tDCS intervention were included in the final analysis. RESULTS: Different tDCS protocols were used for tinnitus ranging single to repeated sessions (up to 10) consisting of daily single session of 15 to 20-min and current intensities ranging 1-2 mA. Dorsolateral prefrontal cortex (DLPFC) and auditory cortex are the main targets of stimulation. Both single and repeated sessions showed moderate to significant treatment effects on tinnitus symptoms. In addition to improvements in tinnitus symptoms, the tDCS interventions particularly bifrontal DLPFC showed beneficial outcomes on depression and anxiety comorbid with tinnitus. Heterogeneities in the type of tinnitus, tDCS devices, protocols, and site of stimulation made the systematic reviews of the literature difficult. However, the current evidence shows that tDCS can be developed as an adjunct or complementary treatment for intractable tinnitus. TDCS may be a safe and cost-effective treatment for tinnitus in the short-term application. CONCLUSIONS: The current literature shows moderate to significant therapeutic efficacy of tDCS on tinnitus symptoms. Further randomized placebo-controlled double-blind trials with large sample sizes are needed to reach a definitive conclusion on the efficacy of tDCS for tinnitus. Future studies should further focus on developing efficient disease- and patient-specific protocols.


Subject(s)
Tinnitus/therapy , Transcranial Direct Current Stimulation , Clinical Trials as Topic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...