Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(21): 38930-38937, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258445

ABSTRACT

Photonic systems built on the Silicon-on-Insulator platform exhibit a strong birefringence, and must thus be operated with a single polarization for most applications. Hence, on-chip polarizers that can effectively suppress an undesired polarization state are key components for these systems. Polarizers that extinguish TE polarized light while letting TM polarized light pass with low losses are particularly challenging to design for the standard 220 nm Silicon-on-Insulator platform, because the modal confinement is stronger for TE polarization than for TM polarzation. Here, we propose and design a broadband, low loss and high extinction ratio TM-pass polarizer by engineering a Bragg grating that reflects the fundamental TE mode into the first order TE mode using a subwavelength metamaterial which at the same time allows the TM mode to pass. Our device achieves an extinction ratio in excess of 20 dB, insertion losses below 0.5 dB and back-reflections of the fundamental TE mode of the order of -20 dB in a bandwidth of 150 nm as demonstrated with full 3D-FDTD simulations.

2.
Opt Lett ; 46(21): 5300-5303, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34724460

ABSTRACT

Beam splitters are core components of photonic integrated circuits and are often implemented with multimode interference couplers. While these devices offer high performance, their operational bandwidth is still restrictive for sensing applications in the mid-infrared wavelength range. Here we experimentally demonstrate a subwavelength-structured 2×2 multimode interference coupler with high performance in the 3.1-3.7µm range, doubling the bandwidth of a conventional device.

3.
Opt Lett ; 46(19): 4821-4824, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598208

ABSTRACT

Current optical communication systems rely on the use of wavelength division multiplexing (WDM) to keep up with the increasing data rate requirements. The wavelength demultiplexer is the key component to implement WDM systems. In this Letter, we design and experimentally demonstrate a demultiplexer based on a curved grating waveguide geometry that separates eight channels with a spacing of 10 nm (1249 GHz) around the central wavelength of 1550 nm. The fabricated device shows very low insertion loss (∼1dB) and a crosstalk (XT) below -25dB. This device leverages metamaterial index engineering to implement the lateral cladding on one side of the waveguide. This makes it possible to design a waveguide grating with highly directional lateral emission by operating in a regime where diffraction into the silica upper cladding is frustrated, thus suppressing losses due to off-chip radiation.

4.
Opt Lett ; 46(15): 3733-3736, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329268

ABSTRACT

Integrated optical antennas are key components for on-chip light detection and ranging technology (LIDAR). In order to achieve a highly collimated far field with reduced beam divergence, antenna lengths on the order of several millimeters are required. In the high-index contrast silicon photonics platform, achieving such long antennas typically demands weakly modulated gratings with lithographic minimum feature sizes below 10 nm. Here, we experimentally demonstrate a new, to the best of our knowledge, strategy to make long antennas in silicon waveguides using a metamaterial subwavelength grating (SWG) waveguide core loaded with a lateral periodic array of radiative elements. The mode field confinement is controlled by the SWG duty cycle, and the delocalized propagating mode overlaps with the periodic perturbations. With this arrangement, weak antenna radiation strength can be achieved while maintaining a minimum feature size as large as 80 nm. Using this strategy, we experimentally demonstrate a 2-millimeter-long, single-etched subwavelength-engineered optical antenna on a conventional 220 nm SOI platform, presenting a measured far-field beam divergence of 0.1° and a wavelength scanning sensitivity of 0.13°/nm.

5.
Opt Express ; 29(11): 15867-15881, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154164

ABSTRACT

Spectral filters are important building blocks for many applications in integrated photonics, including datacom and telecom, optical signal processing and astrophotonics. Sidewall-corrugated waveguide grating is typically the preferred option to implement spectral filters in integrated photonic devices. However, in the high-index contrast silicon-on-insulator (SOI) platform, designs with corrugation sizes of only a few tens of nanometers are often required, which hinders their fabrication. In this work, we propose a novel geometry to design complex Bragg filters with an arbitrary spectral response in silicon waveguides with laterally coupled Bragg loading segments. The waveguide core is designed to operate with a delocalized mode field, which helps reduce sensitivity to fabrication errors and increase accuracy on synthesized coupling coefficients and the corresponding spectral shape control. We present an efficient design strategy, based on the layer-peeling and layer-adding algorithms, that allows to readily synthesize an arbitrary target spectrum for our cladding-modulated Bragg gratings. The proposed filter concept and design methodology are validated by designing and experimentally demonstrating a complex spectral filter in an SOI platform, with 20 non-uniformly spaced spectral notches with a 3-dB linewidth as small as 210 pm.

6.
Opt Express ; 29(11): 16867-16878, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154239

ABSTRACT

In recent years, sensing and communication applications have fueled important developments of group-IV photonics in the mid-infrared band. In the long-wave range, most platforms are based on germanium, which is transparent up to ∼15-µm wavelength. However, those platforms are limited by the intrinsic losses of complementary materials or require complex fabrication processes. To overcome these limitations, we propose suspended germanium waveguides with a subwavelength metamaterial lateral cladding that simultaneously provides optical confinement and allows structural suspension. These all-germanium waveguides can be fabricated in one dry and one wet etch step. A propagation loss of 5.3 dB/cm is measured at a wavelength of 7.7 µm. These results open the door for the development of integrated devices that can be fabricated in a simple manner and can potentially cover the mid-infrared band up to ∼15 µm.

7.
Opt Lett ; 46(10): 2409-2412, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988596

ABSTRACT

Diffraction gratings that redirect light propagating in a channel waveguide to an on-chip slab are emerging as important building blocks in integrated photonics. Such distributed Bragg deflectors enable precise shaping of slab confined beams for a variety of applications, including wavelength multiplexing, optical phased array feeding, and coupling interfaces for on-chip point-to-point communications. However, these deflectors suffer from significant losses caused by off-chip radiation. In this Letter, we show, for the first time, to the best of our knowledge, that off-chip radiation can be dramatically reduced by using the single-beam phase matching condition and subwavelength metamaterial refractive index engineering. We present a deflector design with losses below 0.3 dB, opening a path toward new applications of distributed Bragg deflectors in integrated photonics.

8.
Opt Express ; 28(25): 37971-37985, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379620

ABSTRACT

Subwavelength grating (SWG) waveguides have been shown to provide enhanced light-matter interaction resulting in superior sensitivity in integrated photonics sensors. Narrowband integrated optical filters can be made by combining SWG waveguides with evanescently coupled Bragg gratings. In this paper, we assess the sensing capabilities of this novel filtering component with rigorous electromagnetic simulations. Our design is optimized for an operating wavelength of 1310 nm to benefit from lower water absorption and achieve narrower bandwidths than at the conventional wavelength of 1550 nm. Results show that the sensor achieves a sensitivity of 507 nm/RIU and a quality factor of 4.9 × 104, over a large dynamic range circumventing the free spectral range limit of conventional devices. Furthermore, the intrinsic limit of detection, 5.1 × 10-5 RIU constitutes a 10-fold enhancement compared to state-of-the-art resonant waveguide sensors.

9.
Opt Lett ; 45(20): 5668-5671, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33057254

ABSTRACT

Optical antennas are key components in optical phased arrays for light detection and ranging technology requiring long sensing range and high scanning resolution. To achieve a narrow beam width in the far-field region, antenna lengths of several millimeters or more are required. To date, such long antennas have been impossible to achieve in silicon waveguides because currently demonstrated technologies do not allow accurate control of grating strength. Here, we report on a new type of surface-emitting silicon waveguide with a dramatically increased antenna length of L=3.65mm. This is achieved by using a subwavelength metamaterial waveguide core evanescently coupled with radiative segments laterally separated from the core. This results in a far-field diffracted beam width of 0.025°, which is a record small beam divergence for a silicon photonics surface-emitting device. We also demonstrate that by using a design with L-shaped surface-emitting segments, the radiation efficiency of the antenna can be substantially increased compared to a conventional design, with an efficiency of 72% at the wavelength of 1550 nm.

10.
Opt Lett ; 45(13): 3701-3704, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32635679

ABSTRACT

We present perfectly vertical grating couplers for the 220 nm silicon-on-insulator platform incorporating subwavelength metamaterials to increase the minimum feature sizes and achieve broadband low back-reflection. Our study reveals that devices with high coupling efficiencies are distributed over a wide region of the design space with varied back-reflections, while still maintaining minimum feature sizes larger than 100 nm and even 130 nm. Using 3D-finite-difference time-domain simulations, we demonstrate devices with broadband low back-reflection of less than -20dB over more than 100 nm bandwidth centered around the C-band. Coupling efficiencies of 72% and 67% are achieved for minimum feature sizes of 106 nm and 130 nm, respectively. These gratings are also more fabrication tolerant compared to similar designs not using metamaterials.

11.
Opt Lett ; 45(13): 3398-3401, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630855

ABSTRACT

On-chip polarization splitters are key elements for coherent optical communication systems and polarization diversity circuits. These devices are often implemented with directional couplers that are symmetric for one polarization and strongly asymmetric for the other polarization. To achieve this asymmetry, highly dissimilar waveguides are used in each coupler arm, often requiring additional material layers or etch steps. Here we demonstrate polarization splitting with a directional coupler composed of two fully etched subwavelength waveguides, differing only in the tilt angle of the silicon segments. Our device exhibits deep-UV compatible feature sizes, is 14 µm long, and covers a 72 nm bandwidth with insertion losses below 1 dB and an extinction ratio in excess of 15 dB.

12.
Opt Express ; 28(11): 16385-16393, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549462

ABSTRACT

Subwavelength metamaterials exhibit a strong anisotropy that can be leveraged to implement high-performance polarization handling devices in silicon-on-insulator. Whereas these devices benefit from single-etch step fabrication, many of them require small feature sizes or specialized cladding materials. The anisotropic response of subwavelength metamaterials can be further engineered by tilting its constituent elements away from the optical axis, providing an additional degree of freedom in the design. In this work, we demonstrate this feature through the design, fabrication and experimental characterization of a robust multimode interference polarization beam splitter based on tilted subwavelength gratings. A 110-nm minimum feature size and a standard silicon dioxide cladding are maintained. The resulting device exhibits insertion loss as low as 1 dB, an extinction ratio better than 13 dB in a 120-nm bandwidth, and robust tolerances to fabrication deviations.

13.
Opt Express ; 27(23): 33180-33193, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31878392

ABSTRACT

In integrated optical circuits light typically travels in waveguides which provide both vertical and horizontal confinement, enabling efficient routing between different parts of the chip. However, for a variety of applications, including on-chip wireless communications, steerable phased arrays or free-space inspired integrated optics, optical beams that can freely propagate in the horizontal plane of a 2D slab waveguide are advantageous. Here we present a distributed Bragg deflector that enables well controlled coupling from a waveguide mode to such a 2D on-chip beam. The device consists of a channel waveguide and a slab waveguide region separated by a subwavelength metamaterial spacer to prevent uncontrolled leakage of the guided mode. A blazed grating in the waveguide sidewall is used to gradually diffract light into the slab region. We develop a computationally efficient strategy for designing gratings that generate arbitrarily shaped beams. As a proof-of-concept we design, in the silicon-on-insulator platform, a compact ×75 Gaussian beam expander and a partial beam deflector. For the latter, we also demonstrate a prototype device with experimental results showing good agreement with our theoretical predictions. We also demonstrate via a rigorous simulation that two such couplers in a back-to-back configuration efficiently couple light, suggesting that these devices can be used as highly directive antennas in the chip plane.

14.
Opt Express ; 27(9): 12616-12629, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052800

ABSTRACT

Photonic biosensors offer label-free detection of biomolecules for applications ranging from clinical diagnosis to food quality monitoring. Both sensors based on Mach-Zehnder interferometers and ring resonators are widely used, but are usually read-out using different schemes, making a direct comparison of their fundamental limit of detection challenging. A coherent detection scheme, adapted from optical communication systems, has been recently shown to achieve excellent detection limits, using a simple fixed-wavelength source. Here we present, for the first time, a theoretical model to determine the fundamental limit of detection of such a coherent read-out system, for both interferometric and resonant sensors. Based on this analysis, we provide guidelines for sensor optimization in the presence of optical losses and show that interferometric sensors are preferable over resonant structures when the sensor size is not limited by the available sample volume.

15.
Opt Lett ; 44(4): 1043-1046, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30768051

ABSTRACT

Bragg gratings are fundamental building blocks for integrated photonic circuits. In the high-index contrast silicon-on-insulator material platform, it is challenging to accurately control the grating strength and achieve narrow spectral bandwidths. Here we demonstrate a novel Bragg grating geometry utilizing a silicon subwavelength grating (SWG) waveguide with evanescently coupled periodic Bragg loading segments placed outside the SWG core. We report experimental 3 dB filter bandwidths in a range from 8 nm to 150 pm by adjusting the distance of the Bragg loading segments from the core and the relative phase shift of the segments on the two sides of the waveguide, with a structure that has a minimum feature size of 100 nm.

16.
Opt Lett ; 43(19): 4691-4694, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272716

ABSTRACT

Subwavelength grating (SWG) structures are an essential tool in silicon photonics, enabling the synthesis of metamaterials with a controllable refractive index. Here we propose, for the first time to the best of our knowledge, tilting the grating elements to gain control over the anisotropy of the metamaterial. Rigorous finite difference time domain simulations demonstrate that a 45° tilt results in an effective index variation on the fundamental TE mode of 0.23 refractive index units, whereas the change in the TM mode is 20 times smaller. Our simulation predictions are corroborated by experimental results. We furthermore propose an accurate theoretical model for designing tilted SWG structures based on rotated uniaxial crystals that is functional over a wide wavelength range and for both the fundamental and higher order modes. The proposed control over anisotropy opens promising venues in polarization management devices and transformation optics in silicon photonics.

17.
Opt Express ; 26(1): 179-194, 2018 Jan 08.
Article in English | MEDLINE | ID: mdl-29328290

ABSTRACT

Properties of reflection and transmission spectral filters based on Bragg gratings in subwavelength grating (SWG) metamaterial waveguides on silicon-on-insulator platform have been analyzed using proprietary 2D and 3D simulation tools based on Fourier modal method and the coupled-mode theory. We also demonstrate that the coupled Bloch mode theory can be advantageously applied to design of Bragg gratings in SWG waveguides. By combining different techniques, including judiciously positioning silicon loading segments within the evanescent field of the SWG waveguide and making use of its dispersion properties, it is possible to attain sub-nanometer spectral bandwidths for both reflection and transmission filters in the wavelength range of 1550 nm while keeping minimum structural features of the filters as large as 100 nm. Numerical simulations have also shown that a few nanometer jitter in the size and position of Si segments is well tolerated in our filter designs.

18.
Opt Express ; 25(11): 12222-12236, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786581

ABSTRACT

Subwavelength grating (SWG) waveguides are integrated photonic structures with a pitch substantially smaller than wavelength for which they are designed, so that diffraction effects are suppressed. SWG operates as an artificial metamaterial with an equivalent refractive index which depends on the geometry of the structure and the polarization of the propagating wave. SWG waveguides have been advantageously used in silicon photonics, resulting in significant performance improvements for many practical devices, including highly efficient fiber-chip couplers, waveguide crossings, broadband multimode interference (MMI) couplers, evanescent field sensors and polarization beam splitters, to name a few. Here we present a theoretical and experimental study of the influence of disorder effects in SWG waveguides. We demonstrate via electromagnetic simulations and experimental measurements that even a comparatively small jitter (~5 nm) in the position and size of the SWG segments may cause a dramatic reduction in the transmittance for wide (multimode) SWG waveguides, while for narrow (single mode) waveguides this effect is negligible. Our study shows that the impact of the jitter on SWG waveguide performance is directly related to the modal confinement.

19.
Opt Express ; 24(12): 12893-904, 2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27410309

ABSTRACT

We report, for the first time, on the design and experimental demonstration of fiber-chip surface grating couplers based on subwavelength grating engineered nanostructure operating in the low fiber chromatic dispersion window (around 1.3 µm wavelengths), which is of great interest for short-reach data communication applications. Our coupler designs meet the minimum feature size requirements of large-volume deep-ultraviolet stepper lithography processes. The fiber-chip couplers are implemented in a standard 220-nm-thick silicon-on-insulator (SOI) platform and are fabricated by using a single etch process. Several types of couplers are presented, specifically the uniform, the apodized, and the focusing designs. The measured peak coupling efficiency is -2.5 dB (56%) near the central wavelength of 1.3 µm. In addition, by utilizing the technique of the backside substrate metallization underneath the grating couplers, the coupling efficiency of up to -0.5 dB (89%) is predicted by Finite Difference Time Domain (FDTD) calculations.

20.
Opt Lett ; 41(13): 3013-6, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367089

ABSTRACT

Surface grating couplers enable efficient coupling of light between optical fibers and nanophotonic waveguides. However, in conventional grating couplers, the radiation angle is intrinsically wavelength dependent, thereby limiting their operation bandwidth. In this Letter, we present a zero-order surface grating coupler in silicon-on-insulator which overcomes this limitation by operating in the subwavelength regime. By engineering the effective refractive index of the grating region, both high coupling efficiency and broadband operation bandwidth are achieved. The grating is assisted by a silicon prism on top of the waveguide, which favors upward radiation and minimizes power losses to substrate. Using a linear apodization, our design achieves a coupling efficiency of 91% (-0.41 dB) and a 1-dB bandwidth of 126 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...