Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(6): e0198836, 2018.
Article in English | MEDLINE | ID: mdl-29879209

ABSTRACT

Using a combination of various types of genetic manipulations (promoter replacement and gene cloning in replicating plasmid expression vector), we have overproduced the complex hydrogenase enzyme in the model cyanobacterium Synechocystis PCC6803. This new strain overproduces all twelve following proteins: HoxEFUYH (hydrogen production), HoxW (maturation of the HoxH subunit of hydrogenase) and HypABCDEF (assembly of the [NiFe] redox center of HoxHY hydrogenase). This strain when grown in the presence of a suitable quantities of nickel and iron used here exhibits a strong (25-fold) increase in hydrogenase activity, as compared to the WT strain growing in the standard medium. Hence, this strain can be very useful for future analyses of the cyanobacterial [NiFe] hydrogenase to determine its structure and, in turn, improve its tolerance to oxygen with the future goal of increasing hydrogen production. We also report the counterintuitive notion that lowering the activity of the Synechocystis urease can increase the photoproduction of biomass from urea-polluted waters, without decreasing hydrogenase activity. Such cyanobacterial factories with high hydrogenase activity and a healthy growth on urea constitute an important step towards the future development of an economical industrial processes coupling H2 production from solar energy and CO2, with wastewater treatment (urea depollution).


Subject(s)
Hydrogen/metabolism , Hydrogenase , Mutation , Synechocystis , Urea/metabolism , Water Purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Hydrogenase/genetics , Synechocystis/enzymology , Synechocystis/genetics
2.
Biochim Biophys Acta Bioenerg ; 1859(7): 501-509, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29496394

ABSTRACT

Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl gF, where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl bP, where P is phytyl, rather than the native BChl aP, we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl gP. Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchGRs gene from Rba. sphaeroides was replaced with bchGHm from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl gF. The construction of a strain producing BChl gF validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl gF.


Subject(s)
Bacteriochlorophylls/biosynthesis , Rhodobacter sphaeroides/metabolism , Biosynthetic Pathways , Photosynthesis , Polyisoprenyl Phosphates/biosynthesis , Rhodobacter sphaeroides/genetics
3.
PLoS One ; 9(2): e89372, 2014.
Article in English | MEDLINE | ID: mdl-24586727

ABSTRACT

In the prospect of engineering cyanobacteria for the biological photoproduction of hydrogen, we have studied the hydrogen production machine in the model unicellular strain Synechocystis PCC6803 through gene deletion, and overexpression (constitutive or controlled by the growth temperature). We demonstrate that the hydrogenase-encoding hoxEFUYH operon is dispensable to standard photoautotrophic growth in absence of stress, and it operates in cell defense against oxidative (H2O2) and sugar (glucose and glycerol) stresses. Furthermore, we showed that the simultaneous over-production of the proteins HoxEFUYH and HypABCDE (assembly of hydrogenase), combined to an increase in nickel availability, led to an approximately 20-fold increase in the level of active hydrogenase. These novel results and mutants have major implications for those interested in hydrogenase, hydrogen production and redox metabolism, and their connections with environmental conditions.


Subject(s)
Glucose/metabolism , Glycerol/metabolism , Hydrogen/metabolism , Oxidative Stress/physiology , Synechocystis/genetics , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen Peroxide/metabolism , Hydrogenase/metabolism , Operon/genetics , Oxidation-Reduction , Oxidative Stress/genetics
4.
J Bacteriol ; 194(19): 5423-33, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22865847

ABSTRACT

We have thoroughly investigated the abrB2 gene (sll0822) encoding an AbrB-like regulator in the wild-type strain of the model cyanobacterium Synechocystis strain PCC6803. We report that abrB2 is expressed from an active but atypical promoter that possesses an extended -10 element (TGTAATAT) that compensates for the absence of a -35 box. Strengthening the biological significance of these data, we found that the occurrence of an extended -10 promoter box and the absence of a -35 element are two well-conserved features in abrB2 genes from other cyanobacteria. We also show that AbrB2 is an autorepressor that is dispensable to cell growth under standard laboratory conditions. Furthermore, we demonstrate that AbrB2 also represses the hox operon, which encodes the Ni-Fe hydrogenase of biotechnological interest, and that the hox operon is weakly expressed even though it possesses the two sequences resembling canonical -10 and -35 promoter boxes. In both the AbrB2-repressed promoters of the abrB2 gene and the hox operon, we found a repeated DNA motif [TT-(N(5))-AAC], which could be involved in AbrB2 repression. Supporting this hypothesis, we found that a TT-to-GG mutation of one of these elements increased the activity of the abrB2 promoter. We think that our abrB2-deleted mutant with increased expression of the hox operon and hydrogenase activity, together with the reporter plasmids we constructed to analyze the abrB2 gene and the hox operon, will serve as useful tools to decipher the function and the regulation of hydrogen production in Synechocystis.


Subject(s)
Gene Expression Regulation, Bacterial/physiology , Hydrogen/metabolism , Hydrogenase/metabolism , Operon/physiology , Synechocystis/metabolism , Base Sequence , DNA, Bacterial/genetics , DNA, Complementary/genetics , Genetic Determinism , Hydrogenase/genetics , Molecular Sequence Data , Mutation , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...