Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 195(1): 713-727, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38330186

ABSTRACT

Plant tetrapyrrole biosynthesis (TPB) takes place in plastids and provides the chlorophyll and heme required for photosynthesis and many redox processes throughout plant development. TPB is strictly regulated, since accumulation of several intermediates causes photodynamic damage and cell death. Protoporphyrinogen oxidase (PPO) catalyzes the last common step before TPB diverges into chlorophyll and heme branches. Land plants possess two PPO isoforms. PPO1 is encoded as a precursor protein with a transit peptide, but in most dicotyledonous plants PPO2 does not possess a cleavable N-terminal extension. Arabidopsis (Arabidopsis thaliana) PPO1 and PPO2 localize in chloroplast thylakoids and envelope membranes, respectively. Interestingly, PPO2 proteins in Amaranthaceae contain an N-terminal extension that mediates their import into chloroplasts. Here, we present multiple lines of evidence for dual targeting of PPO2 to thylakoid and envelope membranes in this clade and demonstrate that PPO2 is not found in mitochondria. Transcript analyses revealed that dual targeting in chloroplasts involves the use of two transcription start sites and initiation of translation at different AUG codons. Among eudicots, the parallel accumulation of PPO1 and PPO2 in thylakoid membranes is specific for the Amaranthaceae and underlies PPO2-based herbicide resistance in Amaranthus species.


Subject(s)
Herbicides , Plant Proteins , Protoporphyrinogen Oxidase , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Plastids/genetics , Plastids/metabolism , Gene Expression Regulation, Plant , Amaranthus/genetics , Amaranthus/drug effects , Chloroplasts/metabolism , Chloroplasts/genetics , Herbicide Resistance/genetics , Arabidopsis/genetics , Thylakoids/metabolism
2.
Plant Cell Environ ; 42(2): 618-632, 2019 02.
Article in English | MEDLINE | ID: mdl-30242849

ABSTRACT

Ferrochelatase (FC) is the final enzyme for haem formation in the tetrapyrrole biosynthesis pathway and encoded by two genes in higher plants. FC2 exists predominantly in green tissue, whereas FC1 is constitutively expressed. We intended to substantiate the specific roles of FC1. The embryo-lethal fc1-2 mutant was used to express the two genomic FC-encoding sequences under the FC1 and FC2 promoter and explore the complementation of the FC1 deficiency. Apart from the successful complementation with FC1, expression of FC2 under control of the FC1 promoter (pFC1::FC2) compensates for missing FC1 but not by FC2 promoter expression. The complementing lines pFC1FC2(fc1/fc1) succeeded under standard growth condition but failed under salt stress. The pFC1FC2(fc1/fc1) line exhibited symptoms of leaf senescence, including accelerated loss of haem and chlorophyll and elevated gene expression for chlorophyll catabolism. In contrast, ectopic FC1 expression (p35S::FC1) resulted in increased chlorophyll accumulation. The limited ability of FC2 to complement fc1 is explained by a faster turnover of FC2 mRNA during stress. It is suggested that FC1-produced haem is essential for embryogenesis and stress response. The pFC1::FC2 expression readily complements the fc1-2 embryo lethality, whereas higher FC1 transcript content contributes essentially to stress tolerance.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Ferrochelatase/physiology , Seeds/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Ferrochelatase/genetics , Ferrochelatase/metabolism , Heme/metabolism , Methyltransferases/metabolism , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Seeds/enzymology , Thylakoids/metabolism
3.
Plant Cell Physiol ; 57(12): 2576-2585, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27818378

ABSTRACT

In plants, two genes encode ferrochelatase (FC), which catalyzes iron chelation into protoporphyrin IX at the final step of heme biosynthesis. FERROCHELATASE1 (FC1) is continuously, but weakly expressed in roots and leaves, while FC2 is dominantly active in leaves. As a continuation of previous studies on the physiological consequences of FC2 inactivation in tobacco, we aimed to assign FC1 function in plant organs. While reduced FC2 expression leads to protoporphyrin IX accumulation in leaves, FC1 down-regulation and overproduction caused reduced and elevated FC activity in root tissue, respectively, but were not associated with changes in macroscopic phenotype, plant development or leaf pigmentation. In contrast to the lower heme content resulting from a deficiency of the dominant FC2 expression in leaves, a reduction of FC1 in roots and leaves does not significantly disturb heme accumulation. The FC1 overexpression was used for an additional approach to re-examine FC activity in mitochondria. Transgenic FC1 protein was immunologically shown to be present in mitochondria. Although matching only a small portion of total cellular FC activity, the mitochondrial FC activity in a FC1 overexpressor line increased 5-fold in comparison with wild-type mitochondria. Thus, it is suggested that FC1 contributes to mitochondrial heme synthesis.


Subject(s)
Ferrochelatase/genetics , Gene Expression Regulation, Plant , Nicotiana/enzymology , Protoporphyrins/metabolism , Down-Regulation , Ferrochelatase/metabolism , Heme/metabolism , Mitochondria/enzymology , Organ Specificity , Phenotype , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plants, Genetically Modified , Protein Transport , RNA, Antisense/genetics , Nicotiana/genetics
4.
Rev. colomb. biotecnol ; 10(2): 63-72, dic. 2008. ilus, tab, graf
Article in Spanish | LILACS | ID: lil-505454

ABSTRACT

El tabaco negro (Nicotiana tabacum L.) es un importante cultivo económico en Cuba por su uso en la manufactura de puros Habanos. Factores bióticos y abióticos lo afectan, de ahí que sea valioso el estudio de los daños fisiológicos que le produce el estrés. El objetivo de este trabajo fue cuantificar los efectos del estrés por temperatura sobre el daño por necrosis en hojas, y determinar la acumulación de peróxido de hidrógeno (H2O2) in situ en los tejidos de Nicotiana tabacum L. (variedad Habana-2000). Se aplicaron diferentes tratamientos de temperatura (4 ºC, 25 ºC, 45 ºC y 60 ºC) a hojas de plantas de 4 semanas de edad; la necrosis se reveló con solución de azul de tripano. El área de tejidos con acumulación de peróxido (H2O2) en plántulas completas de 7 días de edad, sometidas a las mismas condiciones de estrés, se determinó con DAB. Se estimó el porcentaje de área necrosada y de acumulación de H2O2 utilizando el programa de análisis y procesamiento de imágenes ImageJ. Este programa es capaz de adquirir, mostrar, editar, resaltar y analizar imágenes. Se demostró que las hojas sometidas a 4 ºC, independientemente del tiempo de exposición, presentaron una mayor área necrosada (35 por ciento) en comparación con el resto de los tratamientos. Las áreas con acumulación de H2O2 in situ fueron mayores en los tratamientos de estrés por temperaturas altas (45 y 60°C). La detección y cuantificación de la necrosis producida por temperaturas extremas, combinando el método del azul de tripano con el análisis de imágenes, es una herramienta útil para valorar los daños producidos por estrés de temperaturas y pudiera ser utilizado para valorar los daños celulares provocados por otros tipos de estrés


Subject(s)
Nicotiana/physiology
5.
Rev. colomb. biotecnol ; 10(1): 111-121, jul. 2008. ilus, tab, graf
Article in Spanish | LILACS | ID: lil-503546

ABSTRACT

El fósforo (P) es un macronutriente mineral esencial para las plantas. Aunque puede encontrarse en los suelos en diferentes formas minerales, la baja solubilidad de estos disminuye su disponibilidad para las plantas, y el nutriente debe aplicarse como fertilizante a los cultivos. Las reservas mundiales de P son limitadas y tendrán una reducción considerable en los próximos años. Usar microorganismos solubilizadores de fosfatos como inoculante para los cultivos es una alternativa biotecnologica para incrementar la disponibilidad del nutriente. Pantoea sp. (cepa 9C) es una bacteria endofitica fijadora de nitrogeno, aislada del interior de tallos de la caña de azucar (Loiret et al., 2004); este microorganismo produjo halos de solubilizacion con tamaños de hasta 6 mm en medio sólido NBRI-P en 7 dias a 30 grados centigrados, y en ese tiempo y condiciones solubilizo Ca3(PO4)2 en el medio líquido hasta acumular 1128 μg P mL-1. La bacteria sobrevivio durante 35 días en un sustrato preparado con mezcla de Vermiculita y suelo ferralítico rojo (Cambisol Ferrálico, ródico), alcanzando poblaciones de 3,2 x 1015 células g-1. Plantas de rábano (Raphanus sativus, L. var. Scarlet Globe), de alta demanda de P y crecimiento rápido, usadas como modelo y cultivadas en suelos inoculados con el microorganismo, absorbieron mas P que las plantas no inoculadas, alcanzando en los tejidos foliares concentraciones ≥ 3500 ppm P base seca.


Subject(s)
Bacteria , Calcium Phosphates , Raphanus/growth & development , Saccharum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...