Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37448057

ABSTRACT

One of the strengths of laser-induced breakdown spectroscopy (LIBS) is that a large amount of data can be measured relatively easily in a short time, which makes LIBS interesting in many areas, from geomaterial analysis with portable handheld instruments to applications for the exploration of planetary surfaces. Statistical methods, therefore, play an important role in analyzing the data to detect not only individual compositions but also trends and correlations. In this study, we apply two approaches to explore the LIBS data of geomaterials measured with a handheld device at different locations on the Aeolian island of Vulcano, Italy. First, we use the established method, principal component analysis (PCA), and second we adopt the principle of the interesting features finder (IFF), which was recently proposed for the analysis of LIBS imaging data. With this method it is possible to identify spectra that contain emission lines of minor and trace elements that often remain undetected with variance-based methods, such as PCA. We could not detect any spectra with IFF that were not detected with PCA when applying both methods to our LIBS field data. The reason for this may be the nature of our field data, which are subject to more experimental changes than data measured in laboratory settings, such as LIBS imaging data, for which the IFF was introduced first. In conclusion, however, we found that the two approaches complement each other well, making the exploration of the data more intuitive, straightforward, and efficient.


Subject(s)
Trace Elements , Spectrum Analysis/methods , Research Design , Lasers , Data Analysis
2.
Sci Rep ; 7(1): 16897, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203840

ABSTRACT

We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.

SELECTION OF CITATIONS
SEARCH DETAIL
...