Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Molecules ; 26(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34500666

ABSTRACT

Careful optimization of the reaction conditions provided access to the particularly small tetraruthenium macrocycle 2Ru2Ph-Croc, which is composed out of two redox-active divinylphenylene-bridged diruthenium entities {Ru}-1,4-CH=CH-C6H4-CH=CH-{Ru} (Ru2Ph; {Ru} = Ru(CO)Cl(PiPr3)2) and two likewise redox-active and potentially non-innocent croconate linkers. According to single X-ray diffraction analysis, the central cavity of 2Ru2Ph-Croc is shielded by the bulky PiPr3 ligands, which come into close contact. Cyclic voltammetry revealed two pairs of split anodic waves in the weakly ion pairing CH2Cl2/NBu4BArF24 (BArF24 = [B{C6H3(CF3)2-3,5}4]- electrolyte, while the third and fourth waves fall together in CH2Cl2/NBu4PF6. The various oxidized forms were electrogenerated and scrutinized by IR and UV/Vis/NIR spectroscopy. This allowed us to assign the individual oxidations to the metal-organic Ru2Ph entities within 2Ru2Ph-Croc, while the croconate ligands remain largely uninvolved. The lack of specific NIR bands that could be assigned to intervalence charge transfer (IVCT) in the mono- and trications indicates that these mixed-valent species are strictly charge-localized. 2Ru2Ph-Croc is hence an exemplary case, where stepwise IR band shifts and quite sizable redox splittings between consecutive one-electron oxidations would, on first sight, point to electronic coupling, but are exclusively due to electrostatic and inductive effects. This makes 2Ru2Ph-Croc a true "pretender".

2.
Inorg Chem ; 59(22): 16703-16715, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33135894

ABSTRACT

We present the coordination-driven self-assembly of three tetranuclear metallacycles containing intracyclic NH2, OH, or OMe functionalities through the combination of various isophthalic acid building blocks with a divinylphenylene diruthenium complex. All new complexes of this study were characterized by means of nuclear magnetic resonance spectroscopy, ultrahigh-resolution ESI mass spectrometry, cyclic and square wave voltammetry and, in two cases, X-ray diffraction. The hydroxy functionalized macrocycle 4-BOH and the corresponding half-cycle 2-OH stand out, as their intracyclic OH···O hydrogen bonds stabilize their mixed-valent one- (2-OH, 4-BOH) and three-electron-oxidized states (4-BOH). Despite sizable redox splittings between all one-electron waves, the mixed-valent monocations and trications do not exhibit any intervalence charge-transfer band, assignable to through-bond electronic coupling, but nevertheless display distinct IR band shifts of their charge-sensitive Ru(CO) tags. We ascribe these seemingly contradicting observations to a redox-induced shuffling of the OH···O hydrogen bond(s) to the remaining, more electron-rich, reduced redox site.

3.
Inorg Chem ; 59(21): 15563-15569, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33081463

ABSTRACT

In nature, C-H bond oxidation of CH4 involves a peroxo intermediate that decays to the high-valent active species of either a "closed" {FeIV(µ-O)2FeIV} core or an "open" {FeIV(O)(µ-O)FeIV(O)} core. To mimic and to obtain more mechanistic insight in this reaction mode, we have investigated the reactivity of the bioinspired diiron complex [(susan){Fe(OH)(µ-O)Fe(OH)}]2+ [susan = 4,7-dimethyl-1,1,10,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraazadecane], which catalyzes CH3OH oxidation with H2O2 to HCHO and HCO2H. The kinetics is faster in the presence of a proton. 18O-labeling experiments show that the active species, generated by a decay of the initially formed peroxo intermediate [(susan){FeIII(µ-O)(µ-O2)FeIII}]2+, contains one reactive oxygen atom from the µ-oxo and another from the µ-peroxo bridge of its peroxo precursor. Considering an FeIVFeIV active species, a "closed" {FeIV(µ-O)2FeIV} core explains the observed labeling results, while a scrambling of the terminal and bridging oxo ligands is required to account for an "open" {FeIV(O)(µ-O)FeIV(O)} core.

4.
Angew Chem Int Ed Engl ; 59(42): 18485-18489, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32614491

ABSTRACT

Hydrogenase enzymes are excellent proton reduction catalysts and therefore provide clear blueprints for the development of nature-inspired synthetic analogues. Mimicking their catalytic center is straightforward but mimicking the protein matrix around the active site and all its functions remains challenging. Synthetic models lack this precisely controlled second coordination sphere that provides substrate preorganization and catalyst stability and, as a result, their performances are far from those of the natural enzyme. In this contribution, we report a strategy to easily introduce a specific yet customizable second coordination sphere around synthetic hydrogenase models by encapsulation inside M12 L24 cages and, at the same time, create a proton-rich nano-environment by co-encapsulation of ammonium salts, effectively providing substrate preorganization and intermediates stabilization. We show that catalyst encapsulation in these nanocages reduces the catalytic overpotential for proton reduction by 250 mV as compared to the uncaged catalyst, while the proton-rich nano-environment created around the catalyst ensures that high catalytic rates are maintained.

5.
Chem Commun (Camb) ; 56(7): 1062-1065, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31872198

ABSTRACT

Self-assembly of a divinylthiophene-bridged diruthenium complex with 2,5-furandicarboxylate leads to the formation of two macrocyclic structures that differ solely with regard to their respective nuclearities. Both supramolecular isomers were fully characterized and the conversion of the hexa- to the tetraruthenium macrocycle was followed by NMR monitoring.

6.
Chem Commun (Camb) ; 55(84): 12619-12622, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31580367

ABSTRACT

M6L412+ supramolecular cages 3a and 3b (M = Pd, Pt), soluble in organic solvents, contain two different ligand-centered redox sites that enable the reversible storage of up to 16 electrons, as probed by CV, UV/vis spectro-electrochemistry (SEC-UV/Vis), bulk electrolysis and EPR. Encapsulation of a B12F122- anion is confirmed by 1H, 19F NMR and 19F DOSY NMR spectroscopy and mass spectrometry.

7.
Dalton Trans ; 48(20): 6899-6909, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31038147

ABSTRACT

A Cu(i) fully fluorinated O-donor monodentate alkoxide complex, K[Cu(OC4F9)2], was previously shown to form a trinuclear copper-dioxygen species with a {Cu3(µ3-O)2} core, TOC4F9, upon reactivity with O2 at low temperature. Herein is reported a significantly expanded kinetic and mechanistic study of TOC4F9 formation using stopped-flow spectroscopy. The TOC4F9 complex performs catalytic oxidase conversion of hydroquinone (H2Q) to benzoquinone (Q). TOC4F9 also demonstrated hydroxylation of 2,4-di-tert-butylphenolate (DBP) to catecholate, making TOC4F9 the first trinuclear species to perform tyrosinase (both monooxygenase and oxidase) chemistry. Resonance Raman spectra were also obtained for TOC4F9, to our knowledge, the first such spectra for any T species. The mechanism and substrate reactivity of TOC4F9 are compared to those of its bidentate counterpart, TpinF, formed from K[Cu(pinF)(PR3)]. The monodentate derivative has both faster initial formation and more diverse substrate reactivity.


Subject(s)
Copper/chemistry , Hydrocarbons, Fluorinated/chemistry , Monophenol Monooxygenase/chemistry , Catalysis , Cold Temperature , Kinetics , Ligands , Models, Molecular , Molecular Structure , Oxidation-Reduction , Structure-Activity Relationship
8.
Chem Sci ; 10(5): 1316-1321, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30809346

ABSTRACT

The application of large M12L24 nanospheres allows the pre-concentration of catalysts to reach high local concentrations, facilitating reactions that proceed through dinuclear mechanisms. The mechanism of the copper(i)-catalyzed cyclization of 4-pentynoic acid has been elucidated by means of a detailed mechanistic study. The kinetics of the reaction show a higher order in copper, indicating the formation of a bis-Cu intermediate as the key rate determining step of the reaction. This intermediate was further identified during catalysis by CIS-HRMS analysis of the reaction mixture. Based on the mechanistic findings, an M12L24 nanosphere was applied that can bind up to 12 copper catalysts by hydrogen bonding. This pre-organization of copper catalysts in the nanosphere results in a high local concentration of copper leading to higher reaction rates and turnover numbers as the dinuclear pathway is favored.

9.
ChemMedChem ; 14(1): 94-99, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30380199

ABSTRACT

Prolyl hydroxylation domain (PHD) enzymes catalyze the hydroxylation of the transcription factor hypoxia-inducible factor (HIF) and serve as cellular oxygen sensors. HIF and the PHD enzymes regulate numerous potentially tissue-protective target genes which can adapt cells to metabolic and ischemic stress. We describe a fluorescent PHD inhibitor (1-chloro-4-hydroxybenzo[g]isoquinoline-3-carbonyl)glycine which is suited to fluorescence-based detection assays and for monitoring PHD inhibitors in biological systems. In cell-based assays, application of the fluorescent PHD inhibitor allowed co-localization with a cellular PHD enzyme and led to live cell imaging of processes involved in cellular oxygen sensing.


Subject(s)
Benzylisoquinolines/pharmacology , Fluorescent Dyes/pharmacology , Molecular Imaging/methods , Optical Imaging/methods , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Benzylisoquinolines/chemical synthesis , Benzylisoquinolines/chemistry , Biocatalysis/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Molecular Structure , Prolyl-Hydroxylase Inhibitors/chemical synthesis , Prolyl-Hydroxylase Inhibitors/chemistry , Structure-Activity Relationship
10.
Angew Chem Int Ed Engl ; 57(49): 16228-16232, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30312511

ABSTRACT

Herein, we report the isolation and a reactivity study of the first example of an elusive palladium(II) terminal imido complex. This scaffold is an alleged key intermediate for various catalytic processes, including the amination of C-H bonds. We demonstrate facile nitrene transfer with H-H, C-H, N-H, and O-H bonds and elucidate its role in catalysis. The high reactivity is due to the population of the antibonding highest occupied molecular orbital (HOMO), which results in unique charge separation within the closed-shell imido functionality. Hence, N atom transfer is not necessarily associated with the high valency of the metal (PdIII , PdIV ) or the open-shell character of a nitrene as commonly inferred.

11.
Inorg Chem ; 57(16): 10457-10468, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30063339

ABSTRACT

The dinuclear complex [(susan){FeIII(OH)(µ-O)FeIII(OH)}](ClO4)2 (Fe2(OH)2(ClO4)2; susan = 4,7-dimethyl-1,1,10,10-tetra(2-pyridylmethyl)-1,4,7,10-tetraazadecane) with two unsupported terminal hydroxido ligands and for comparison the fluorido-substituted complex [(susan){FeIIIF(µ-O)FeIIIF}](ClO4)2 (Fe2F2(ClO4)2) have been synthesized and characterized in the solid state as well in acetonitrile (CH3CN) and water (H2O) solutions. The Fe-OH bonds are strongly modulated by intermolecular hydrogen bonds (1.85 and 1.90 Å). UV-vis-near-IR (NIR) and Mössbauer spectroscopies prove that Fe2F22+ and Fe2(OH)22+ retain their structural integrity in a CH3CN solution. The OH- ligand induces a weaker ligand field than the F- ligand because of stronger π donation. This increased electron donation shifts the potential for the irreversible oxidation by 610 mV cathodically from 1.40 V in Fe2F22+ to 0.79 V versus Fc+/Fc in Fe2(OH)22+. Protonation/deprotonation studies in CH3CN and aqueous solutions of Fe2(OH)22+ provide two reversible acid-base equilibria. UV-vis-NIR, Mössbauer, and cryo electrospray ionization mass spectrometry experiments show conservation of the mono(µ-oxo) bridging motif, while the terminal OH- ligands are protonated to H2O. Titration experiments in aqueous solution at room temperature provide the p Ka values as p K1 = 4.9 and p K2 = 6.8. Kinetic studies by temperature- and pressure-dependent 17O NMR spectrometry revealed for the first time the water-exchange parameters [ kex298 = (3.9 ± 0.2) × 105 s-1, Δ H⧧ = 39.6 ± 0.2 kJ mol-1, Δ S⧧ = -5.1 ± 1 J mol-1 K-1, and Δ V⧧ = +3.0 ± 0.2 cm3 mol-1] and the underlying Id mechanism for a {FeIII(OH2)(µ-O)FeIII(OH2)} core. The same studies suggest that in solution the monoprotonated {FeIII(OH)(µ-O)FeIII(OH2)} complex has µ-O and µ-O2H3 bridges between the two Fe centers.

12.
Angew Chem Int Ed Engl ; 57(35): 11247-11251, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29975448

ABSTRACT

Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10-5 m) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m). The preorganization strategy enhances the water oxidation rate by two-orders of magnitude to 125 s-1 , as it facilitates the diffusion-controlled rate-limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.

13.
Angew Chem Int Ed Engl ; 57(29): 9154-9159, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29734490

ABSTRACT

Heteroscorpionate ligands of the bis(pyrazolyl)methane family have been applied in the stabilisation of terminal copper tosyl nitrenes. These species are highly active intermediates in the copper-catalysed direct C-H amination and nitrene transfer. Novel perfluoroalkyl-pyrazolyl- and pyridinyl-containing ligands were synthesized to coordinate to a reactive copper nitrene centre. Four distinct copper tosyl nitrenes were prepared at low temperatures by the reaction with SO2 tBuPhINTs and copper(I) acetonitrile complexes. Their stoichiometric reactivity has been elucidated regarding the imination of phosphines and the aziridination of styrenes. The formation and thermal decay of the copper nitrenes were investigated by UV/Vis spectroscopy of the highly coloured species. Additionally, the compounds were studied by cryo-UHR-ESI mass spectrometry and DFT calculations. In addition, a mild catalytic procedure has been developed where the copper nitrene precursors enable the C-H amination of cyclohexane and toluene and the aziridination of styrenes.

14.
Chemistry ; 23(34): 8212-8224, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28236333

ABSTRACT

CuI complexes of the form K[(R3 P)Cu(pinF )], in which (pinF )2- is the bidentate, oxygen-donating ligand perfluoropinacolate, were synthesized and characterized. Low-temperature oxygenation of the K[(R3 P)Cu(pinF )(PR3 )] species resulted in a trisanionic bis(µ3 -oxo) trinuclear copper(II,II,III) core characterized by UV/Vis spectroscopy (λmax [nm] = 330, 535, 630), cryospray-ionization mass spectrometry, and X-band electron paramagnetic resonance spectroscopy (derivative resonance at 3300 G, Δms =2 at 1500 G). The kinetic behavior of the trimeric {Cu3 O2 } species was quantified by stopped-flow spectroscopy and the associated electronic structures were investigated by DFT calculations. An asymmetric {Cu3 O2 } species, As TpinF , which bears a structure similar to multicopper oxidases, forms prior to full formation of the symmetric trinuclear core, Sy TpinF . The trimer catalytically oxidizes para-hydroquinone to benzoquinone (a form of oxidase chemistry).


Subject(s)
Caprylates/chemistry , Copper/chemistry , Fluorocarbons/chemistry , Glycols/chemistry , Oxidoreductases/metabolism , Oxygen/chemistry , Caprylates/metabolism , Catalysis , Drug Stability , Fluorocarbons/metabolism , Ligands , Oxidoreductases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...