Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Mem. Inst. Oswaldo Cruz ; 113(2): 96-101, Feb. 2018. graf
Article in English | LILACS | ID: biblio-894899

ABSTRACT

BACKGROUND The insect chitinase gene family is composed by more than 10 paralogs, which can codify proteins with different domain structures. In Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil, a chitinase cDNA from adult female insects was previously characterized. The predicted protein contains one catalytic domain and one chitin-binding domain (CBD). The expression of this gene coincided with the end of blood digestion indicating a putative role in peritrophic matrix degradation. OBJECTIVES To determine the occurrence of alternative splicing in chitinases of L. longipalpis. METHODS We sequenced the LlChit1 gene from a genomic clone and the three spliced forms obtained by reverse transcription polymerase chain reaction (RT-PCR) using larvae cDNA. FINDINGS We showed that LlChit1 from L. longipalpis immature forms undergoes alternative splicing. The spliced form corresponding to the adult cDNA was named LlChit1A and the two larvae specific transcripts were named LlChit1B and LlChit1C. The B and C forms possess stop codons interrupting the translation of the CBD. The A form is present in adult females post blood meal, L4 larvae and pre-pupae, while the other two forms are present only in L4 larvae and disappear just before pupation. Two bands of the expected size were identified by Western blot only in L4 larvae. MAIN CONCLUSIONS We show for the first time alternative splicing generating chitinases with different domain structures increasing our understanding on the finely regulated digestion physiology and shedding light on a potential target for controlling L. longipalpis larval development.


Subject(s)
Animals , Chitinases/genetics , Reverse Transcriptase Polymerase Chain Reaction , Digestive System/enzymology , Chitinases/physiology , Alternative Splicing/genetics
2.
Mem Inst Oswaldo Cruz ; 113(2): 96-101, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29236932

ABSTRACT

BACKGROUND The insect chitinase gene family is composed by more than 10 paralogs, which can codify proteins with different domain structures. In Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil, a chitinase cDNA from adult female insects was previously characterized. The predicted protein contains one catalytic domain and one chitin-binding domain (CBD). The expression of this gene coincided with the end of blood digestion indicating a putative role in peritrophic matrix degradation. OBJECTIVES To determine the occurrence of alternative splicing in chitinases of L. longipalpis. METHODS We sequenced the LlChit1 gene from a genomic clone and the three spliced forms obtained by reverse transcription polymerase chain reaction (RT-PCR) using larvae cDNA. FINDINGS We showed that LlChit1 from L. longipalpis immature forms undergoes alternative splicing. The spliced form corresponding to the adult cDNA was named LlChit1A and the two larvae specific transcripts were named LlChit1B and LlChit1C. The B and C forms possess stop codons interrupting the translation of the CBD. The A form is present in adult females post blood meal, L4 larvae and pre-pupae, while the other two forms are present only in L4 larvae and disappear just before pupation. Two bands of the expected size were identified by Western blot only in L4 larvae. MAIN CONCLUSIONS We show for the first time alternative splicing generating chitinases with different domain structures increasing our understanding on the finely regulated digestion physiology and shedding light on a potential target for controlling L. longipalpis larval development.


Subject(s)
Alternative Splicing/genetics , Chitinases/genetics , Digestive System/enzymology , Psychodidae/enzymology , Animals , Chitinases/physiology , Female , Phylogeny , Psychodidae/physiology , Reverse Transcriptase Polymerase Chain Reaction
3.
J Biol Chem ; 287(16): 12985-93, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22375009

ABSTRACT

Female phlebotomine sand flies Lutzomyia longipalpis naturally harbor populations of the medically important Leishmania infantum (syn. Leishmania chagasi) parasite in the gut, but the extent to which the parasite interacts with the immune system of the insect vector is unknown. To investigate the sand fly immune response and its interaction with the Leishmania parasite, we identified a homologue for caspar, a negative regulator of immune deficiency signaling pathway. We found that feeding antibiotics to adult female L. longipalpis resulted in an up-regulation of caspar expression relative to controls. caspar was differentially expressed when females were fed on gram-negative and gram-positive bacterial species. caspar expression was significantly down-regulated in females between 3 and 6 days after a blood feed containing Leishmania mexicana amastigotes. RNA interference was used to deplete caspar expression in female L. longipalpis, which were subsequently fed with Leishmania in a blood meal. Sand fly gut populations of both L. mexicana and L. infantum were significantly reduced in caspar-depleted females. The prevalence of L. infantum infection in the females fell from 85 to 45%. Our results provide the first insight into the operation of immune homeostasis in phlebotomine sand flies during the growth of bacterial and Leishmania populations in the digestive tract. We have demonstrated that the activation of the sand fly immune system, via depletion of a single gene, can lead to the abortion of Leishmania development and the disruption of transmission by the phlebotomine sand fly.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Leishmania infantum/immunology , Leishmania mexicana/immunology , Leishmaniasis, Visceral/immunology , Psychodidae , Adaptor Proteins, Signal Transducing/immunology , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/parasitology , Genes, Insect/immunology , Immunity, Innate/immunology , Leishmania infantum/growth & development , Leishmania mexicana/growth & development , Phylogeny , Psychodidae/genetics , Psychodidae/immunology , Psychodidae/parasitology
4.
Mol Genet Genomics ; 282(3): 307-17, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19565270

ABSTRACT

Leishmaniasis is an important worldwide public health problem. Visceral leishmaniasis caused by Leishmania infantum chagasi is mainly transmitted by Lutzomyia longipalpis in the Americas. Leishmania development within the sand fly vector is mostly restricted to the midgut. Thus, a comparative analysis of blood-fed versus infected midguts may provide an invaluable insight into various aspects of sand fly immunity, physiology of blood digestion, and, more importantly, of Leishmania development. To that end, we have engaged in a study to identify expressed sequenced tags (ESTs) from L. longipalpis cDNA libraries produced from midguts dissected at different times post blood meal and also after artificial infection with L. i. chagasi. A total of 2,520 ESTs were obtained and, according to the quality of the sequencing data obtained, assembled into 378 clusters and 1,526 individual sequences or singletons totalizing 1,904 sequences. Several sequences associated with defense, apoptosis, RNAi, and digestion processes were annotated. The data presented here increases current knowledge on the New World sand fly transcriptome, contributing to the understanding of various aspects of the molecular physiology of L. longipalpis, and mechanisms underlying the relationship of this sand fly species with L. i. chagasi.


Subject(s)
Expressed Sequence Tags , Insect Vectors/genetics , Leishmania , Leishmaniasis, Visceral/transmission , Psychodidae/genetics , Animals , Gene Expression Profiling , Insect Vectors/parasitology , Psychodidae/parasitology , Sequence Analysis, DNA
5.
Arch Insect Biochem Physiol ; 66(2): 53-63, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17879236

ABSTRACT

Trypsins constitute some of the most abundant midgut digestive proteases expressed by hematophagous insects upon blood feeding. In addition to their role in the digestion of the blood meal, these proteases also have been implicated in the ability of certain pathogens to infect their natural vector. In sand flies, digestive proteases including trypsins were associated with early killing of Leishmania and are believed to play a role in the species-specificity dictating sand fly vectorial capacity. Our group is involved in studies of midgut digestive proteases in the sand fly Lutzomyia longipalpis, the principal vector of visceral leishmaniasis in Brazil. Here we report on the identification of two cDNAs, Lltryp1 and Lltryp2, which code for putative midgut trypsins in L. longipalpis. Analyses of RNA abundance using semi-quantitative RT-PCR show a different pattern of expression between the two genes. Lltryp1 expression remains undetected until blood feeding and reaches a peak at 12 h post-blood meal (PBM), returning to pre-blood meal levels at 72 h PBM. Additionally, Lltryp1 expression is undetected during larval development. Lltryp2, on the other hand, is constitutively expressed as high levels in the non-blood fed female, but is reduced upon blood feeding. At the end of the digestive cycle, Lltryp2 regains its pre-blood meal levels. This cDNA also is present in all developmental stages and in adult males. This pattern of expression is reminiscent of what is seen in mosquitoes and Old World sand flies, but has characteristics that are unique to L. longipalpis.


Subject(s)
Blood , Gene Expression Regulation, Developmental , Psychodidae/genetics , Trypsin/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary , Feeding Behavior/physiology , Female , Molecular Sequence Data , Phylogeny , Psychodidae/enzymology , Psychodidae/physiology , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL