Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(10): 4392-400, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26811960

ABSTRACT

The energetic performances of seven SOD or RHO-topology ZIFs, with zinc or cobalt metal cation (ZIF-8, ZIF-90, Zn(dcim)2-SALE, ZIF-67, ZIF-7, ZIF-71, ZIF-11) were evaluated using water intrusion-extrusion under high pressure. The relationship between the structural parameters (in particular the pore system SOD or RHO, the type of linker, the metal cation nature) and the intrusion pressure was studied to better understand the mechanism of water intrusion and the energetic behaviour for a given ZIF crystal type. "ZIF-8-water", "ZIF-67-water" and "ZIF-71-water" systems display a shock-absorber behaviour. A very important hysteresis for ZIF-71 and a slight difference between the first intrusion-extrusion cycle and the following ones for ZIF-67 were observed. ZIF-8 (SOD) with zinc cation and ZIF-67 (SOD) with cobalt cation display similar intrusion pressures. For ZIF-71 (RHO) material, the stored energy is more than doubled compared to ZIF-8 and ZIF-67 (SOD). This might be related to the topology. No water intrusion was observed after three water intrusion-extrusion cycles, for the ZIF-90 (SOD), Zn(dcim)2-SALE (SOD), ZIF-7 (SOD) and ZIF-11 (RHO) materials. This is explained in term of hydrophilic feature as well as topology and linker effects.

2.
Phys Chem Chem Phys ; 15(14): 4888-91, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23443335

ABSTRACT

The "ZIF-8-water" system displays reproducible shock-absorber behaviour over several cycles with a stored energy of 13.3 J g(-1) and an energy yield close to 85%. The combination of the main features evidenced for ZIF-8, i.e. a quite low intrusion pressure and a high stored energy, opens a field for new applications.


Subject(s)
Organometallic Compounds/chemistry , Thermodynamics , Water/chemistry , Zeolites/chemistry , Pressure
3.
Chemistry ; 17(24): 6689-95, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21538607

ABSTRACT

Metal-organic frameworks constructed by self-assembly of metal ions and organic linkers have recently been of great interest in the preparation of porous hybrid materials with a wide variety of functions. Despite much research in this area and the large choice of building blocks used to fine-tune pore size and structure, it remains a challenge to synthesise frameworks composed of polyamines to tailor the porosity and adsorption properties for CO(2). Herein, we describe a rigid and microporous three-dimensional metal-organic framework with the formula [Zn(2)(L)(H(2)O)]Cl (L=1,4,7-tris(4-carboxybenzyl)-1,4,7-triazacyclononane) synthesised in a one-pot solvothermal reaction between zinc ions and a flexible cyclic polyaminocarboxylate. We have demonstrated, for the first time, that a porous rigid framework can be obtained by starting from a flexible amine building block. Sorption measurements revealed that the material exhibited a high surface area (135 m(2) g(-1)) and was the best compromise between capacity and selectivity for CO(2) over CO, CH(4), N(2) and O(2); as such it is a promising new selective adsorbent for CO(2) capture.

SELECTION OF CITATIONS
SEARCH DETAIL
...