Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Bioinformatics ; 31(17): 2915-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25940562

ABSTRACT

MOTIVATION: Horizontal transfer of transposable (HTT) elements among eukaryotes was discovered in the mid-1980s. As then, >300 new cases have been described. New findings about HTT are revealing the evolutionary impact of this phenomenon on host genomes. In order to provide an up to date, interactive and expandable database for such events, we developed the HTT-DB database. RESULTS: HTT-DB allows easy access to most of HTT cases reported along with rich information about each case. Moreover, it allows the user to generate tables and graphs based on searches using Transposable elements and/or host species classification and export them in several formats. AVAILABILITY AND IMPLEMENTATION: This database is freely available on the web at http://lpa.saogabriel.unipampa.edu.br:8080/httdatabase. HTT-DB was developed based on Java and MySQL with all major browsers supported. Tools and software packages used are free for personal or non-profit projects. CONTACT: bdotto82@gmail.com or gabriel.wallau@gmail.com.


Subject(s)
DNA Transposable Elements/genetics , Databases, Factual , Eukaryota/genetics , Gene Transfer, Horizontal , Genome , Software , Animals , Eukaryota/classification , Evolution, Molecular , Humans , Species Specificity
2.
Mol Genet Genomics ; 290(1): 67-78, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25146840

ABSTRACT

Evidences of horizontal transfer, the exchange of genetic material between reproductively isolated species, have accumulated over the last decades, including for multicellular eukaryotic organisms. However, the mechanisms and ecological relationships that promote such phenomenon is still poorly known. Host-parasite interaction is one type of relationship usually pointed in the literature that could potentially increase the probability of the horizontal transfer between species, because the species involved in such relationships are generally in close contact. Transposable elements, which are well-known genomic parasites, are DNA entities that tend to be involved in horizontal transfer due to their ability to mobilize between different genomic locations. Using Drosophila species and their parasitoid wasps as a host-parasite model, we evaluated the hypothesis that horizontal transposon transfers (HTTs) are more frequent in this set of species than in species that do not exhibit a close ecological and phylogenetic relationship. For this purpose, we sequenced two sets of species using a metagenomic and single-species genomic sampling approach through next-generation DNA sequencing. The first set was composed of five generalist Drosophila (D. maculifrons, D. bandeirantorum, D. polymorpha, D. mercatorum and D. willistoni) species and their associated parasitoid wasps, whereas the second set was composed of D. incompta, which is a flower specialist species, and its parasitoid wasp. We did not find strong evidence of HTT in the two sets of Drosophila and wasp parasites. However, at least five cases of HTT were observed between the generalist and specialist Drosophila species. Moreover, we detected an HT event involving a Wolbachia lineage between generalist and specialist species, indicating that these endosymbiotic bacteria could play a role as HTT vectors. In summary, our results do not support the hypothesis of prevalent HTT between species with a host-parasite relationship, at least for the studied wasp-Drosophila pairs. Moreover, it suggests that other mechanisms or parasites are involved in promoting HTT between Drosophila species as the Wolbachia endosymbiotic bacteria.


Subject(s)
DNA Transposable Elements/genetics , Drosophila/parasitology , Gene Transfer, Horizontal/genetics , Host-Parasite Interactions , Wasps/physiology , Animals , Base Sequence , Drosophila/microbiology , Genes, Mitochondrial , Genome, Insect/genetics , Phylogeny , Reproducibility of Results , Species Specificity , Wasps/virology , Wolbachia/physiology
3.
PLoS Negl Trop Dis ; 8(9): e3176, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25233456

ABSTRACT

BACKGROUND: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. METHODOLOGY/PRINCIPAL FINDINGS: The T. rangeli haploid genome is ∼ 24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. CONCLUSIONS/SIGNIFICANCE: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets.


Subject(s)
Genome, Protozoan , Phylogeny , Trypanosoma rangeli/genetics , Animals , Base Sequence , DNA, Protozoan/genetics , Haploidy , Humans
4.
Genome Biol Evol ; 4(8): 689-99, 2012.
Article in English | MEDLINE | ID: mdl-22798449

ABSTRACT

The genetic similarity observed among species is normally attributed to the existence of a common ancestor. However, a growing body of evidence suggests that the exchange of genetic material is not limited to the transfer from parent to offspring but can also occur through horizontal transfer (HT). Transposable elements (TEs) are DNA fragments with an innate propensity for HT; they are mobile and possess parasitic characteristics that allow them to exist and proliferate within host genomes. However, horizontal transposon transfer (HTT) is not easily detected, primarily because the complex TE life cycle can generate phylogenetic patterns similar to those expected for HTT events. The increasingly large number of new genome projects, in all branches of life, has provided an unprecedented opportunity to evaluate the TE content and HTT events in these species, although a standardized method of HTT detection is required before trends in the HTT rates can be evaluated in a wide range of eukaryotic taxa and predictions about these events can be made. Thus, we propose a straightforward hypothesis test that can be used by TE specialists and nonspecialists alike to discriminate between HTT events and natural TE life cycle patterns. We also discuss several plausible explanations and predictions for the distribution and frequency of HTT and for the inherent biases of HTT detection. Finally, we discuss some of the methodological concerns for HTT detection that may result in the underestimation and overestimation of HTT rates during eukaryotic genome evolution.


Subject(s)
DNA Transposable Elements , Eukaryota/genetics , Gene Transfer, Horizontal , Animals , Eukaryota/classification , Evolution, Molecular , Genome , Species Specificity
5.
Genet. mol. biol ; 30(1,suppl): 283-289, 2007. ilus
Article in English | LILACS | ID: lil-450446

ABSTRACT

We have analyzed the sequenced genomes of three strains of Mycoplasma hyopneumoniae and one strain of M. synoviae, and have found three and two different transposable element families, respectively in each species. In M. hyopneumoniae, the Insertion Sequences of the IS4 family is represented by ISMHp1, a putatively active element. The IS3 family is represented by several degenerated sequences. A third element called tMH was found, which shows some characteristics reminiscent of retrotransposons. In M. synoviae, three different possibly active IS4 elements are present (ISMHp1-like; ISMs1 and IS1634-like elements). The IS30 family is represented by the degenerated IS1630-like element. The IS1634-like element is shown to be involved in chromosomal rearrangements and horizontal gene transfer (HGT). The ISMHp1-like element is shown to relate to the HGT of a 25-kb region from M. gallisepticum to M. synoviae. The fractions of these genomes that correspond to mobile elements varied from 1.35 to 3.13 percent in M. hyopneumonia strains and was 2.08 percent in M. synoviae. Although these species possess reduced genomes, they maintain mobile elements, perhaps as a mechanism for genetic variability production.

SELECTION OF CITATIONS
SEARCH DETAIL
...