Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Mo Med ; 121(2): 142-148, 2024.
Article in English | MEDLINE | ID: mdl-38694605

ABSTRACT

The treatment of spinal pathologies has evolved significantly from the times of Hippocrates and Galen to the current era. This evolution has led to the development of cutting-edge technologies to improve surgical techniques and patient outcomes. The University of Missouri Health System is a high-volume, tertiary care academic medical center that serves a large catchment area in central Missouri and beyond. The Department of Neurosurgery has sought to integrate the best available technologies to serve their spine patients. These technological advancements include intra-operative image guidance, robotic spine surgery, minimally invasive techniques, motion preservation surgery, and interdisciplinary care of metastatic disease to the spine. These advances have resulted in safer surgeries with enhanced outcomes at the University of Missouri. This integration of innovation demonstrates our tireless commitment to ensuring excellence in the comprehensive care of a diverse range of patients with complex spinal pathologies.


Subject(s)
Spinal Diseases , Humans , Missouri , Spinal Diseases/surgery , Academic Medical Centers/organization & administration , Minimally Invasive Surgical Procedures/methods , Neurosurgical Procedures/methods , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/trends , Spine/surgery
2.
Article in English | MEDLINE | ID: mdl-38499911

ABSTRACT

We present a class of model-free Data-Driven solvers that effectively enable the utilization of in situ and in vivo imaging data directly in full-scale calculations of the mechanical response of the human brain to sonic and ultrasonic stimulation, entirely bypassing the need for analytical modeling or regression of the data. The well-posedness of the approach and its convergence with respect to data are proven analytically. We demonstrate the approach, including its ability to make detailed spatially resolved patient-specific predictions of wave patterns, using public-domain MRI images, MRE data and commercially available solid-mechanics software.

3.
Pediatr Blood Cancer ; 71(6): e30949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520048

ABSTRACT

PURPOSE: To evaluate local failure (LF) and toxicity after intraoperative radiation therapy (IORT) in pediatric solid tumors (ST). METHODS: A single-institution retrospective study of 96 pediatric patients (108 applications) with ST treated from 1995 to 2022 with IORT. LF was calculated via cumulative incidence function and overall survival (OS) by Kaplan-Meier method, both from the day of surgery. RESULTS: Median age at time of IORT was 8 years (range: 0.8-20.9 years). Median follow-up for all patients and surviving patients was 16 months and 3 years, respectively. The most common histologies included rhabdomyosarcoma (n = 42), Ewing sarcoma (n = 10), and Wilms tumor (n = 9). Most (95%) received chemotherapy, 37% had prior external beam radiation therapy to the site of IORT, and 46% had a prior surgery for tumor resection. About half (54%) were treated with upfront IORT to the primary tumor due to difficult circumstances such as very young age or challenging anatomy. The median IORT dose was 12 Gy (range: 4-18 Gy), and median area treated was 24 cm2 (range: 2-198 cm2). The cumulative incidence of LF was 17% at 2 years and 23% at 5 years. Toxicity from IORT was reasonable, with postoperative complications likely related to IORT seen in 15 (16%) patients. CONCLUSION: Our study represents the largest and most recent analysis of efficacy and safety of IORT in pediatric patients with ST. Less than one quarter of all patients failed locally with acceptable toxicities. Overall, IORT is an effective and safe technique to achieve local control in patients with challenging circumstances.


Subject(s)
Sarcoma , Humans , Child , Child, Preschool , Male , Retrospective Studies , Female , Adolescent , Infant , Sarcoma/radiotherapy , Sarcoma/mortality , Sarcoma/surgery , Young Adult , Follow-Up Studies , Intraoperative Care , Survival Rate , Adult , Sarcoma, Ewing/radiotherapy , Sarcoma, Ewing/mortality , Sarcoma, Ewing/surgery , Neoplasms/radiotherapy , Neoplasms/surgery , Neoplasms/mortality
4.
J Neurointerv Surg ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471761

ABSTRACT

BACKGROUND: The optimal target post-procedure stenosis after percutaneous angioplasty and stent placement (PTAS) for intracranial stenosis is unknown. We determined the effect of post-procedure stenosis after intracranial PTAS on subsequent clinical events in patients with severe symptomatic intracranial stenosis. METHODS: We categorized the severity of post-procedure stenosis as '<30%', '30-49%', and '≥50%' among 207 patients who underwent PTAS in a multicenter randomized clinical trial. Outcomes included stroke or death within 72 hours and within 30 days, ipsilateral stroke beyond 30 days of treatment, and stroke or death within 30 days or stroke in the qualifying artery beyond 30 days (primary endpoint of the trial). Cox proportional hazards analysis was performed with adjustments for age, initial severity of stenosis, location of stenosis, and qualifying event. Kaplan-Meier curves were generated for the primary endpoint stratified by post-procedure stenosis with log-rank analysis. RESULTS: The severity of post-procedure stenosis was categorized as <30%, 30-49%, and ≥50% in 112, 73, and 22 patients, respectively. Compared with patients with post-procedure stenosis <30%, there was no difference in the risk of primary endpoint among patients with post-procedure stenoses of 30-49% (hazards ratio (HR) 0.85, 95% confidence interval (95% CI) 0.64 to 1.15) or those with ≥50% (HR 0.91, 95% CI 0.57 to 1.43). Log-rank analysis did not demonstrate a difference in rates of primary endpoint between groups stratified by post-procedure stenosis (P=0.70). CONCLUSION: In the absence of any benefit on short- and long-term outcomes, strategies to achieve a low severity of post-procedure stenosis among patients with severe intracranial stenosis may not be warranted.

6.
Nat Rev Urol ; 21(3): 158-180, 2024 03.
Article in English | MEDLINE | ID: mdl-37848532

ABSTRACT

The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Humans , Kidney Neoplasms/therapy , Neoplasm Recurrence, Local , Wilms Tumor/therapy , Biomarkers , Biology
7.
Mol Cancer Ther ; 23(4): 507-519, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38159110

ABSTRACT

The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.


Subject(s)
Antineoplastic Agents , Neoplasms , Child , Humans , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Biomarkers , Cell Line, Tumor
8.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37812025

ABSTRACT

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Osteosarcoma/genetics , Whole Genome Sequencing , Genomics , Bone Neoplasms/genetics , Recurrence , DNA Copy Number Variations , Mutation
9.
Eur J Cancer ; 190: 112950, 2023 09.
Article in English | MEDLINE | ID: mdl-37441939

ABSTRACT

DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.


Subject(s)
Antineoplastic Agents , Neuroblastoma , United States , Adult , Humans , Child , Adolescent , Antineoplastic Agents/therapeutic use , BRCA1 Protein , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , United States Food and Drug Administration , Retrospective Studies , BRCA2 Protein , Neuroblastoma/drug therapy , Biomarkers , DNA Damage , Membrane Proteins , Protein-Tyrosine Kinases , Protein Serine-Threonine Kinases
10.
Proc Natl Acad Sci U S A ; 120(24): e2216522120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279274

ABSTRACT

During infections with the malaria parasites Plasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In other Plasmodium species that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al., Science 368, 746-753 (2020); Smith et al., Science 368, 754-759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, because Plasmodium cycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected with P. vivax to examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host-parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling.


Subject(s)
Malaria, Vivax , Malaria , Parasites , Plasmodium , Humans , Mice , Animals , Host-Parasite Interactions , Malaria/parasitology , Plasmodium/genetics
12.
Cancer Discov ; 13(6): 1386-1407, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37061969

ABSTRACT

Predicting in vivo response to antineoplastics remains an elusive challenge. We performed a first-of-kind evaluation of two transcriptome-based precision cancer medicine methodologies to predict tumor sensitivity to a comprehensive repertoire of clinically relevant oncology drugs, whose mechanism of action we experimentally assessed in cognate cell lines. We enrolled patients with histologically distinct, poor-prognosis malignancies who had progressed on multiple therapies, and developed low-passage, patient-derived xenograft models that were used to validate 35 patient-specific drug predictions. Both OncoTarget, which identifies high-affinity inhibitors of individual master regulator (MR) proteins, and OncoTreat, which identifies drugs that invert the transcriptional activity of hyperconnected MR modules, produced highly significant 30-day disease control rates (68% and 91%, respectively). Moreover, of 18 OncoTreat-predicted drugs, 15 induced the predicted MR-module activity inversion in vivo. Predicted drugs significantly outperformed antineoplastic drugs selected as unpredicted controls, suggesting these methods may substantively complement existing precision cancer medicine approaches, as also illustrated by a case study. SIGNIFICANCE: Complementary precision cancer medicine paradigms are needed to broaden the clinical benefit realized through genetic profiling and immunotherapy. In this first-in-class application, we introduce two transcriptome-based tumor-agnostic systems biology tools to predict drug response in vivo. OncoTarget and OncoTreat are scalable for the design of basket and umbrella clinical trials. This article is highlighted in the In This Issue feature, p. 1275.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Transcriptome , Precision Medicine/methods , Medical Oncology/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
Pediatr Blood Cancer ; 70 Suppl 2: e30342, 2023 05.
Article in English | MEDLINE | ID: mdl-37096797

ABSTRACT

Outcomes are excellent for the majority of patients with Wilms tumors (WT). However, there remain WT subgroups for which the survival rate is approximately 50% or lower. Acknowledging that the composition of this high-risk group has changed over time reflecting improvements in therapy, we introduce the authors' view of the historical and current approach to the classification and treatment of high-risk WT. For this review, we consider high-risk WT to include patients with newly diagnosed metastatic blastemal-type or diffuse anaplastic histology, those who relapse after having been initially treated with three or more different chemotherapeutics, or those who relapse more than once. In certain low- or low middle-income settings, socio-economic factors expand the definition of what constitutes a high-risk WT. As conventional therapies are inadequate to cure the majority of high-risk WT patients, advancement of laboratory and early-phase clinical investigations to identify active agents is urgently needed.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Humans , Kidney Neoplasms/pathology , Neoplasm Staging , Wilms Tumor/pathology , Prognosis , Recurrence
15.
Pediatr Blood Cancer ; 70(3): e30153, 2023 03.
Article in English | MEDLINE | ID: mdl-36625399

ABSTRACT

Outcomes are excellent for the majority of patients with Wilms tumors (WT). However, there remain WT subgroups for which the survival rate is approximately 50% or lower. Acknowledging that the composition of this high-risk group has changed over time reflecting improvements in therapy, we introduce the authors' view of the historical and current approach to the classification and treatment of high-risk WT. For this review, we consider high-risk WT to include patients with newly diagnosed metastatic blastemal-type or diffuse anaplastic histology, those who relapse after having been initially treated with three or more different chemotherapeutics, or those who relapse more than once. In certain low- or low middle-income settings, socio-economic factors expand the definition of what constitutes a high-risk WT. As conventional therapies are inadequate to cure the majority of high-risk WT patients, advancement of laboratory and early-phase clinical investigations to identify active agents is urgently needed.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Humans , Kidney Neoplasms/pathology , Neoplasm Staging , Wilms Tumor/pathology , Prognosis , Recurrence
16.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36711976

ABSTRACT

Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.

18.
Front Oncol ; 13: 1327478, 2023.
Article in English | MEDLINE | ID: mdl-38188287

ABSTRACT

Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.

19.
Med ; 3(11): 774-791.e7, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36195086

ABSTRACT

BACKGROUND: Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS: Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS: metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS: We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING: This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.


Subject(s)
Kidney Neoplasms , Child , Humans , Child, Preschool , Cell Line, Tumor , Xenograft Model Antitumor Assays , Kidney Neoplasms/drug therapy , Exportin 1 Protein
20.
Biophys J ; 121(21): 4221-4228, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36081347

ABSTRACT

Acoustic reporter genes based on gas vesicles (GVs) have enabled the use of ultrasound to noninvasively visualize cellular function in vivo. The specific detection of GV signals relative to background acoustic scattering in tissues is facilitated by nonlinear ultrasound imaging techniques taking advantage of the sonomechanical buckling of GVs. However, the effect of geometry on the buckling behavior of GVs under exposure to ultrasound has not been studied. To understand such geometric effects, we developed computational models of GVs of various lengths and diameters and used finite element simulations to predict their threshold buckling pressures and postbuckling deformations. We demonstrated that the GV diameter has an inverse cubic relation to the threshold buckling pressure, whereas length has no substantial effect. To complement these simulations, we experimentally probed the effect of geometry on the mechanical properties of GVs and the corresponding nonlinear ultrasound signals. The results of these experiments corroborate our computational predictions. This study provides fundamental insights into how geometry affects the sonomechanical properties of GVs, which, in turn, can inform further engineering of these nanostructures for high-contrast, nonlinear ultrasound imaging.


Subject(s)
Acoustics , Nanostructures , Ultrasonography/methods , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...