Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(7): 3768-3778, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015126

ABSTRACT

Antibody-based therapies are a promising treatment option for managing ebolavirus infections. Several Ebola virus (EBOV)-specific and, more recently, pan-ebolavirus antibody cocktails have been described. Here, we report the development and assessment of a Sudan virus (SUDV)-specific antibody cocktail. We produced a panel of SUDV glycoprotein (GP)-specific human chimeric monoclonal antibodies (mAbs) using both plant and mammalian expression systems and completed head-to-head in vitro and in vivo evaluations. Neutralizing activity, competitive binding groups, and epitope specificity of SUDV mAbs were defined before assessing protective efficacy of individual mAbs using a mouse model of SUDV infection. Of the mAbs tested, GP base-binding mAbs were more potent neutralizers and more protective than glycan cap- or mucin-like domain-binding mAbs. No significant difference was observed between plant and mammalian mAbs in any of our in vitro or in vivo evaluations. Based on in vitro and rodent testing, a combination of two SUDV-specific mAbs, one base binding (16F6) and one glycan cap binding (X10H2), was down-selected for assessment in a macaque model of SUDV infection. This cocktail, RIID F6-H2, provided protection from SUDV infection in rhesus macaques when administered at 50 mg/kg on days 4 and 6 postinfection. RIID F6-H2 is an effective postexposure SUDV therapy and provides a potential treatment option for managing human SUDV infection.


Subject(s)
Antibodies, Viral/administration & dosage , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Disease Models, Animal , Ebolavirus/genetics , Female , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Immunotherapy , Macaca mulatta , Male , Mice , Viral Proteins/immunology
2.
Sci Rep ; 6: 24897, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27109916

ABSTRACT

Polyclonal antibodies, derived from humans or hyperimmunized animals, have been used prophylactically or therapeutically as countermeasures for a variety of infectious diseases. SAB Biotherapeutics has successfully developed a transchromosomic (Tc) bovine platform technology that can produce fully human immunoglobulins rapidly, and in substantial quantities, against a variety of disease targets. In this study, two Tc bovines expressing high levels of fully human IgG were hyperimmunized with a recombinant glycoprotein (GP) vaccine consisting of the 2014 Ebola virus (EBOV) Makona isolate. Serum collected from these hyperimmunized Tc bovines contained high titers of human IgG against EBOV GP as determined by GP specific ELISA, surface plasmon resonance (SPR), and virus neutralization assays. Fully human polyclonal antibodies against EBOV were purified and evaluated in a mouse challenge model using mouse adapted Ebola virus (maEBOV). Intraperitoneal administration of the purified anti-EBOV IgG (100 mg/kg) to BALB/c mice one day after lethal challenge with maEBOV resulted in 90% protection; whereas 100% of the control animals succumbed. The results show that hyperimmunization of Tc bovines with EBOV GP can elicit protective and potent neutralizing fully human IgG antibodies rapidly and in commercially viable quantities.


Subject(s)
Animals, Genetically Modified , Antibodies, Viral/blood , Antibodies, Viral/therapeutic use , Cattle , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin G/therapeutic use , Mice, Inbred BALB C , Neutralization Tests , Surface Plasmon Resonance , Treatment Outcome
3.
Clin Cancer Res ; 20(14): 3660-71, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24788102

ABSTRACT

PURPOSE: Racotumomab-alum is an anti-idiotype vaccine targeting the NeuGcGM3 tumor-associated ganglioside. This clinical trial was conducted to provide a preliminary estimate of efficacy and safety of racotumomab as switch maintenance for patients with advanced non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN: Patients with stage IIIb/IV NSCLC who have at least stable disease after first-line chemotherapy were randomized 1:1 to racotumomab-alum (5 immunizations every 2 weeks and re-immunizations every 4 weeks) or placebo. Treatment was administered beyond progressive disease, until severe performance status worsening or toxicity. At progression, only five patients per group received further anticancer therapy. The primary endpoint was overall survival (OS). RESULTS: One-hundred and seventy-six patients were randomized to racotumomab-alum (n = 87) and placebo (n = 89). Median OS was 8.23 and 6.80 months, respectively [HR, 0.63; 95% confidence interval (CI), 0.46-0.87; P = 0.004]. Median progression-free survival (PFS) in vaccinated patients was 5.33 versus 3.90 months for placebo (HR, 0.73; 95% CI 0.53-0.99; P = 0.039). The most common adverse events in the racotumomab-alum arm were burning and pain at the injection site, bone pain, and asthenia. A high antibody response of IgM and IgG isotype against the NeuGcGM3 ganglioside was obtained. Hyperimmune sera were able to specifically recognize and kill the NeuGcGM3-expressing L1210 cell line. Patients who developed anti-NeuGcGM3 antibodies capable to bind and kill ≥30% L1210 cells showed longer median survival times. CONCLUSIONS: Switch maintenance with racotumomab-alum is an effective and a well-tolerated treatment option for patients with advanced NSCLC.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Antibodies, Monoclonal/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Antibodies, Monoclonal, Murine-Derived , Cancer Vaccines/administration & dosage , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Double-Blind Method , Female , G(M3) Ganglioside/analogs & derivatives , G(M3) Ganglioside/immunology , G(M3) Ganglioside/metabolism , Humans , Kaplan-Meier Estimate , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Maintenance Chemotherapy , Male , Middle Aged , Neoplasm Staging , Placebos , Proportional Hazards Models , Treatment Outcome
4.
J Virol ; 87(9): 4952-64, 2013 May.
Article in English | MEDLINE | ID: mdl-23408633

ABSTRACT

There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.


Subject(s)
Ebolavirus/immunology , Encephalitis Virus, Venezuelan Equine/genetics , Hemorrhagic Fever, Ebola/prevention & control , Replicon , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Ebolavirus/genetics , Encephalitis Virus, Venezuelan Equine/physiology , Genetic Vectors/genetics , Genetic Vectors/physiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Macaca fascicularis , Vaccination , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
5.
Proc Natl Acad Sci U S A ; 109(13): 5034-9, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22411795

ABSTRACT

Antibody therapies to prevent or limit filovirus infections have received modest interest in recent years, in part because of early negative experimental evidence. We have overcome the limitations of this approach, leveraging the use of antibody from nonhuman primates (NHPs) that survived challenge to filoviruses under controlled conditions. By using concentrated, polyclonal IgG antibody from these survivors, we treated filovirus-infected NHPs with multiple doses administered over the clinical phase of disease. In the first study, Marburg virus (MARV)-infected NHPs were treated 15 to 30 min postexposure with virus-specific IgG, with additional treatments on days 4 and 8 postexposure. The postexposure IgG treatment was completely protective, with no signs of disease or detectable viremia. MARV-specific IgM antibody responses were generated, and all macaques survived rechallenge with MARV, suggesting that they generated an immune response to virus replication. In the next set of studies, NHPs were infected with MARV or Ebola virus (EBOV), and treatments were delayed 48 h, with additional treatments on days 4 and 8 postexposure. The delayed treatments protected both MARV- and EBOV-challenged NHPs. In both studies, two of the three IgG-treated NHPs had no clinical signs of illness, with the third NHP developing mild and delayed signs of disease followed by full recovery. These studies clearly demonstrate that postexposure antibody treatments can protect NHPs and open avenues for filovirus therapies for human use using established Food and Drug Administration-approved polyclonal or monoclonal antibody technologies.


Subject(s)
Antibodies, Viral/immunology , Filoviridae Infections/immunology , Filoviridae Infections/prevention & control , Filoviridae/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Animals , Chemical Fractionation , Ebolavirus/immunology , Filoviridae Infections/virology , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/immunology , Marburgvirus/immunology , Neutralization Tests , Species Specificity , Survival Analysis
6.
Int J Environ Res Public Health ; 8(12): 4386-405, 2011 12.
Article in English | MEDLINE | ID: mdl-22408580

ABSTRACT

Increased temperatures and changes in rainfall patterns as a result of climate change are widely recognized to entail potentially serious consequences for human health, including an increased risk of diarrheal diseases. This study integrates historical data on temperature and rainfall with the burden of disease from cholera in Tanzania and uses socioeconomic data to control for the impacts of general development on the risk of cholera. The results show a significant relationship between temperature and the incidence of cholera. For a 1 degree Celsius temperature increase the initial relative risk of cholera increases by 15 to 29 percent. Based on the modeling results, we project the number and costs of additional cases of cholera that can be attributed to climate change by 2030 in Tanzania for a 1 and 2 degree increase in temperatures, respectively. The total costs of cholera attributable to climate change are shown to be in the range of 0.32 to 1.4 percent of GDP in Tanzania 2030. The results provide useful insights into national-level estimates of the implications of climate change on the health sector and offer information which can feed into both national and international debates on financing and planning adaptation.


Subject(s)
Cholera/epidemiology , Climate Change/economics , Costs and Cost Analysis , Humans , Incidence , Rain , Seasons , Tanzania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...