Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37759571

ABSTRACT

The gut microbiome is important for digestion, host fitness, and defense against pathogens, which provides a tool for host health assessment. Amphibians and their microbiomes are highly susceptible to pollutants including antibiotics. We explored the role of an unmanipulated gut microbiome on tadpole fitness and phenotype by comparing tadpoles of Rana berlandieri in a control group (1) with tadpoles exposed to: (2) Roundup® (glyphosate active ingredient), (3) antibiotic cocktail (enrofloxacin, sulfamethazine, trimethoprim, streptomycin, and penicillin), and (4) a combination of Roundup and antibiotics. Tadpoles in the antibiotic and combination treatments had the smallest dorsal body area and were the least active compared to control and Roundup-exposed tadpoles, which were less active than control tadpoles. The gut microbial community significantly changed across treatments at the alpha, beta, and core bacterial levels. However, we did not find significant differences between the antibiotic- and combination-exposed tadpoles, suggesting that antibiotic alone was enough to suppress growth, change behavior, and alter the gut microbiome composition. Here, we demonstrate that the gut microbial communities of tadpoles are sensitive to environmental pollutants, namely Roundup and antibiotics, which may have consequences for host phenotype and fitness via altered behavior and growth.

2.
Microb Ecol ; 86(2): 1331-1342, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36282286

ABSTRACT

Elevated concentrations of nitrite are toxic to fish and can cause a myriad of well documented issues. However, the effects of sublethal concentrations of nitrite on fish health, and specifically, fish tissue microbiomes have not been studied. To test the effects of nitrite exposure, goldfish were exposed to sublethal concentrations of nitrite, 0.0 mM, 0.1 mM, and 1.0 mM, for 2 months. The bacteria in the nose, skin, gills, and water were then extracted and sequenced to identify changes to the microbial composition. The water microbiome was not significantly changed by the added nitrite; however, each of the tissue microbiomes was changed by at least one of the treatments. The skin and gill microbiomes were significantly different between the control and 1.0 mM treatment and the nose microbiome showed significant changes between the control and both the 0.1 mM and 1.0 mM treatments. Thus, sublethal concentrations of nitrite in the environment caused a shift in the fish tissue microbiomes independently of the water microbiome. These changes could lead to an increased chance of infection, disrupt organ systems, and raise the mortality rate of fish. In systems with high nitrite concentrations, like intensive aquaculture setups or polluted areas, the effects of nitrite on the microbiomes could negatively affect fish populations.


Subject(s)
Goldfish , Nitrites , Animals , Aquaculture , Gills/microbiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...