Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 22(9): 1413-1423, 2019 09.
Article in English | MEDLINE | ID: mdl-31427770

ABSTRACT

Understanding the transcriptional changes that are engaged in stress resilience may reveal novel antidepressant targets. Here we use gene co-expression analysis of RNA-sequencing data from brains of resilient mice to identify a gene network that is unique to resilience. Zfp189, which encodes a previously unstudied zinc finger protein, is the highest-ranked key driver gene in the network, and overexpression of Zfp189 in prefrontal cortical neurons preferentially activates this network and promotes behavioral resilience. The transcription factor CREB is a predicted upstream regulator of this network and binds to the Zfp189 promoter. To probe CREB-Zfp189 interactions, we employ CRISPR-mediated locus-specific transcriptional reprogramming to direct CREB or G9a (a repressive histone methyltransferase) to the Zfp189 promoter in prefrontal cortex neurons. Induction of Zfp189 with site-specific CREB is pro-resilient, whereas suppressing Zfp189 expression with G9a increases susceptibility. These findings reveal an essential role for Zfp189 and CREB-Zfp189 interactions in mediating a central transcriptional network of resilience.


Subject(s)
Adaptation, Psychological/physiology , Stress, Psychological/genetics , Zinc Fingers/genetics , Animals , Gene Regulatory Networks/genetics , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Transcription, Genetic
2.
J Med Chem ; 59(4): 1580-98, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26699912

ABSTRACT

Development of tool molecules that inhibit Jumonji demethylases allows for the investigation of cancer-associated transcription. While scaffolds such as 2,4-pyridinedicarboxylic acid (2,4-PDCA) are potent inhibitors, they exhibit limited selectivity. To discover new inhibitors for the KDM4 demethylases, enzymes overexpressed in several cancers, we docked a library of 600,000 fragments into the high-resolution structure of KDM4A. Among the most interesting chemotypes were the 5-aminosalicylates, which docked in two distinct but overlapping orientations. Docking poses informed the design of covalently linked fragment compounds, which were further derivatized. This combined approach improved affinity by ∼ 3 log-orders to yield compound 35 (Ki = 43 nM). Several hybrid inhibitors were selective for KDM4C over the related enzymes FIH, KDM2A, and KDM6B while lacking selectivity against the KDM3 and KDM5 subfamilies. Cocrystal structures corroborated the docking predictions. This study extends the use of structure-based docking from fragment discovery to fragment linking optimization, yielding novel KDM4 inhibitors.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Mesalamine/chemistry , Mesalamine/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/enzymology
3.
Chem Biol ; 20(4): 494-9, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23601638

ABSTRACT

Jumonji histone demethylases catalyze removal of methyl marks from lysine residues in histone proteins within nucleosomes. Here, we show that the catalytic domain of demethylase JMJD2A (cJMJD2A) utilizes a distributive mechanism to remove the histone H3 lysine 9 trimethyl mark. By developing a method to assess demethylation of homogeneous, site-specifically methylated nucleosomes, we determined that the kinetic parameters for demethylation of nucleosomes by cJMJD2A are comparable to those of peptide substrates. These findings imply that other domains of the demethylase or its protein partners may contribute to nucleosome recognition in vivo and, in this way, may further regulate demethylation activity and processivity. The quantitative assays of nucleosome demethylation developed in our work provide a platform for future work with complex chromatin substrates and full-length demethylases.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/metabolism , Nucleosomes/metabolism , Biocatalysis , Catalytic Domain , Chromatin/metabolism , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Kinetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...