Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 32(3): 377-84, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18773961

ABSTRACT

Transgenic mice overexpressing Dyrk1A (TgDyrk1A), a Down syndrome (DS) candidate gene, exhibit motor and cognitive alterations similar to those observed in DS individuals. To gain new insights into the molecular consequences of Dyrk1A overexpression underlying TgDyrk1A and possibly DS motor phenotypes, microarray studies were performed. Transcriptome analysis showed an upregulation of the NR2A subunit of the NMDA type of glutamate receptors in TgDyrk1A cerebellum. NR2A protein overexpression was also detected in TgDyrk1A cerebellar homogenates, in the synaptosome-enriched fraction and in TgDyrk1A primary cerebellar granular neuronal cultures (CGNs). In TgDyrk1A synaptosomes, calcium-imaging experiments showed a higher calcium uptake after NMDA stimulation. Similarly, NMDA administration promoted longer calcium transients in TgDyrk1A CGNs. Taken together, these results show that NMDA-induced calcium rise is altered in TgDyrk1A cerebellar neurons and indicate that calcium signaling is dysregulated in TgDyrk1A mice cerebella. These findings suggest that DYRK1A overexpression might contribute to the dysbalance in the excitatory transmission found in the cerebellum of DS individuals and DS mouse models.


Subject(s)
Calcium/metabolism , Cerebellum/metabolism , Down Syndrome/genetics , N-Methylaspartate/pharmacology , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/physiology , Receptors, N-Methyl-D-Aspartate/genetics , Up-Regulation , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Down Syndrome/metabolism , Gene Expression Profiling , Immunohistochemistry , In Vitro Techniques , Male , Mice , Mice, Transgenic , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptosomes/metabolism , Dyrk Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...