Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Environ Contam Toxicol ; 108(5): 956-962, 2022 May.
Article in English | MEDLINE | ID: mdl-35226110

ABSTRACT

The tropical endogeic earthworm Pontoscolex corethrurus, a non-standard species used in ecotoxicity, has been found in crude oil-contaminated habitats. We estimated the removal of total hydrocarbons from heavy crude "Maya" oil on an artificially contaminated soil with a median lethal concentration of P. corethrurus and an addition of oil palm bagasse. P. corethrurus had a high survival rate, and the addition of oil palm bagasse led to a greater growth and an increase in abundance of bacteria and fungi. The activity of P. corethrurus and the nutritional quality of oil palm bagasse had a significant impact on the removal of a larger amount of petroleum hydrocarbons from contaminated soil. We concluded that the endogeic earthworm P. corethrurus and oil palm bagasse acted synergistically to achieve a more effective removal of total petroleum hydrocarbons from soil. These results show the potential for using P. corethrurus to remove, either directly or indirectly, crude oil from soil.


Subject(s)
Oligochaeta , Petroleum , Soil Pollutants , Animals , Biodegradation, Environmental , Cellulose , Hydrocarbons , Petroleum/toxicity , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
2.
Zookeys ; 941: 49-69, 2020.
Article in English | MEDLINE | ID: mdl-32595407

ABSTRACT

Pontoscolex corethrurus (Müller, 1857) is an invasive tropical earthworm, globally distributed. It reproduces through parthenogenesis, which theoretically results in low genetic diversity. The analysis of the population structure of P. corethrurus using molecular markers may significantly contribute to understanding the ecology and reproductive system of this earthworm species. This work assessed the genetic diversity and population structure of P. corethrurus with 34 polymorphic inter simple sequence repeat markers, covering four populations in tropical and temperate pastures from Veracruz State. Nuclear markers distinguished two genetic clusters, probably corresponding to two distinct genetic lineages. The number of clones detected in the AC population was lower than expected for a parthenogenetic species. Also, the apparent lack of differences in population structures related to the geographic region among the populations studied may indicate that human-mediated transference is prevalent in these areas. Still, most individuals apparently belong to lineage A, and only a few individuals seem to belong to the lineage B. Thus, the admixture signatures found among the four populations of P. corethrurus may have facilitated a successful invasion by directly increasing fitness. In summary, addressing the genetic variation of P. corethrurus with ISSR markers was a suitable approach, as it evidenced the genetic diversity and relationships in the populations evaluated.

3.
PLoS One ; 14(9): e0222337, 2019.
Article in English | MEDLINE | ID: mdl-31539381

ABSTRACT

The presence of earthworm species in crop fields is as old as agriculture itself. The earthworms Pontoscolex corethrurus (invasive) and Balanteodrilus pearsei (native) are associated with the emergence of agriculture and sedentism in the region Amazon and Maya, respectively. Both species have shifted their preference from their natural habitat to the cropland niche. They contrast in terms of intensification of agricultural land use (anthropic impact to the symbiotic soil microbiome). P. corethrurus inhabits conventional agroecosystems, while B. pearsei thrives in traditional agroecosystems, i.e., P. corethrurus has not yet been recorded in soils where B. pearsei dwells. The demographic behavior of these two earthworm species was assessed in the laboratory over 100 days, according to their origin (OE; P. corethrurus and B. pearsei) food quality (FQ; soil only, maize stubble, Mucuna pruriens), and soil moisture (SM; 25, 33, 42%). The results showed that OE, FQ, SM, and the OE x FQ interaction were highly significant for the survival, growth, and reproduction of earthworms. P. corethrurus showed a lower survival rate (> mortality). P. corethrurus survivors fed a diet of low-to-intermediate nutritional quality (soil and stubble maize, respectively) showed a greater capacity to grow and reproduce; however, it was surpassed by the native earthworm when fed a high-quality diet (M. pruriens). Besides, P. corethrurus displayed a low cocoon hatching (emergence of juveniles). These results suggest that the presence of the invasive species was associated with a negative interaction with the soil microbiota where the native species dwells, and with the absence of natural mutualistic bacteria (gut, nephridia, and cocoons). These results are consistent with the absence of P. corethrurus in milpa and pasture-type agricultural niches managed by peasants (agroecologists) to grow food regularly through biological soil management. Results reported here suggest that P. corethrurus is an invasive species that is neither wild nor domesticated, that is, its eco-evolutionary phylogeny needs to be derived based on its symbionts.


Subject(s)
Introduced Species , Oligochaeta/physiology , Animals , Biomass , Ecology , Oligochaeta/growth & development , Reproduction , Soil
4.
Bull Environ Contam Toxicol ; 99(2): 154-160, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28638962

ABSTRACT

Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with "Maya" Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC50) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.


Subject(s)
Oligochaeta/physiology , Petroleum/toxicity , Soil Pollutants/toxicity , Animals , Ecotoxicology , Hydrocarbons/toxicity , Mexico , Petroleum Pollution/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis , Toxicity Tests, Acute
5.
PeerJ ; 4: e2572, 2016.
Article in English | MEDLINE | ID: mdl-27761348

ABSTRACT

The tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) presents a broad distribution (e.g., 56 countries from four continents). It is generally assumed that temperature appears to limit the success of tropical exotic species in temperate climates. However, the distribution range of this species could advance towards higher elevations (with lower temperatures) where no tropical species currently occur. The aim of this study was to evaluate the soil and climatic variables that could be closely associated with the distribution of P. corethrurus in four sites along an altitudinal gradient in central Veracruz, Mexico. We predicted that the distribution of P. corethrurus would be more related to climate variables than edaphic parameters. Five sampling points (in the grassland) were established at each of four sites along an altitudinal gradient: Laguna Verde (LV), La Concepción (LC), Naolinco (NA) and Acatlán (AC) at 11-55, 992-1,025, 1,550-1,619 y 1,772-1,800 masl, respectively. The climate ranged from tropical to temperate along the altitudinal gradient. Ten earthworm species (5 Neotropical, 4 Palearctic and 1 Nearctic) were found along the gradient, belonging to three families (Rhinodrilidae, Megascolecide and Lumbricidae). Soil properties showed a significant association (positive for Ngrass, pH, permanent wilting point, organic matter and P; and negative for Total N, K and water-holding capacity) with the abundance of the earthworm community. Also there seems to be a relationship between climate and earthworm distribution along the altitudinal gradient. P. corethrurus was recorded at tropical (LV and LC) and temperate sites (NA) along the altitudinal gradient. Our results reveal that soil fertility determines the abundance of earthworms and site (climate) can act as a barrier to their migration. Further research is needed to determine the genetic structure and lineages of P. corethrurus along altitudinal gradients.

6.
PeerJ ; 4: e2032, 2016.
Article in English | MEDLINE | ID: mdl-27231655

ABSTRACT

Nest construction is a common form of parental care in soil organisms. However, it is unknown whether the tropical earthworm Pontoscolex corethrurus produces nests in soils with low nutritional quality habitats. Here we studied the reproductive behaviour and nest site selection of P. corethrurus, and tested the hypothesis whether P. corethrurus produces more cocoons in habitats with low nutritional quality. In bidimensional terrariums we evaluated the combined effect of the nutritional quality of habitat: (Poor Quality Habitat = PQH, Medium Quality Habitat = MQH, High Quality Habitat = HQH) and soil depth (Shallow, Intermediate, Deep) in a factorial 3(2) design. The number and biomass of cocoons, progeny and the production of internal and external excreta were evaluated. The quality habitat and depth of soil and their interaction had a significant effect on nest site construction and the deposition of internal excreta. Pontoscolex corethrurus built a higher amount of nests in the PQH-Intermediate and MQH-Intermediate treatments while more internal excreta were found in the HQH-Intermediate treatment. Offspring biomass was positively associated with internal excreta in the PQH (soil only) and MQH (soil + grass) treatments, suggesting that this could be a form of parental care. Since P. corethrurus produces more cocoons in low and medium quality habitats, while produces more internal excreta at high quality habitats, there does not seem to be an association between number of offspring and parental care. We suggest P. corethrurus could have two reproductive strategies that act as diversified bet-hedging (do not put all cocoons in one basket) behavior in unpredictable environment, and thus build a higher amount of nests in low and medium quality habitats; and another where they produce more internal excreta as a form of parental care in high quality habitats. Parental care in the form of internal excreta may be particularly important in poor and medium quality habitats where offspring biomass increased with internal excreta. Further research is needed on the ecological conditions that favour the evolution of parental care in earthworms according to their ecological category (epigeic, endogeic and anecic).

7.
Article in English | MEDLINE | ID: mdl-26943338

ABSTRACT

This study investigated the rheological behavior of raw physicochemical sludges and sludges that were digested at different organic loading rates (OLRs) (1, 5, 10 and 15 gVS L(-1) d(-1)) during methanogenesis suppression to produce hydrogen anaerobically. The Herschel-Bulkley model was used to describe the rheology of these sludges with specific properties. The results indicate that the Herschel-Bulkley model adequately described the rheology (τ0 ≠ 0) of this type of fluids (R(2) > 0.98). In addition, the raw physicochemical sludges and those that were digested at different OLRs had dilatant behaviors (n > 1), which increased with increasing OLR. These results identified the apparent viscosity, yield stress, pH and OLR conditions that allow for the production and suppression of methane, as well as the conditions that guarantee the production of hydrogen.


Subject(s)
Hydrogen/chemistry , Methane/chemistry , Sewage/chemistry , Chemical Phenomena , Humans , Models, Theoretical , Rheology
8.
Int J Syst Evol Microbiol ; 62(Pt 9): 2264-2271, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22081714

ABSTRACT

Two novel related Rhizobium species, Rhizobium grahamii sp. nov. and Rhizobium mesoamericanum sp. nov., were identified by a polyphasic approach using DNA-DNA hybridization, whole-genome sequencing and phylogenetic and phenotypic characterization including nodulation of Leucaena leucocephala and Phaseolus vulgaris (bean). As similar bacteria were found in the Los Tuxtlas rainforest in Mexico and in Central America, we suggest the existence of a Mesoamerican microbiological corridor. The type strain of Rhizobium grahamii sp. nov. is CCGE 502(T) (= ATCC BAA-2124(T) = CFN 242(T) = Dal4(T) = HAMBI 3152(T)) and that of Rhizobium mesoamericanum sp. nov. is CCGE 501(T) (= ATCC BAA-2123(T) = HAMBI 3151(T) = CIP 110148(T) = 1847(T)).


Subject(s)
Fabaceae/microbiology , Phylogeny , Rhizobium/classification , Root Nodules, Plant/microbiology , Soil Microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Genes, Bacterial , Mexico , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...