Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(10): 6998-7005, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38414989

ABSTRACT

Prolactin is a polypeptide hormone made of 199 amino acids; 50% of the amino acid chain forms helices, and the rest forms loops. This hormone is typically related to initiating and maintaining lactation, although it is also elevated in various pathological conditions. Serum prolactin levels of 2 to 18 ng ml-1 in men, up to 30 ng ml-1 in women, and 10 to 210 ng ml-1 in pregnant women are considered normal. Immunoassay techniques used for detection are susceptible to error in different clinical conditions. Surface-enhanced Raman spectroscopy (SERS) is a technique that allows for obtaining the protein spectrum in a simple, fast, and reproducible manner. Nonetheless, proper characterization of human prolactin's Raman/SERS spectrum at different concentrations has so far not been deeply discussed. This study aims to characterize the Raman spectrum of human prolactin at physiological concentrations using silver nanoparticles (AgNPs) as the SERS substrate. The Raman spectrum of prolactin at 20 ng ul-1 was acquired. Quasi-spherical AgNPs were obtained using chemical synthesis. For SERS characterization, decreasing dilutions of the protein were made by adding deionized water and then a 1 : 1 volume of the AgNPs colloid. For each mixture, the Raman spectrum was determined. The spectrum of prolactin by SERS was obtained with a concentration of up to 0.1 ng ml-1. It showed characteristic bands corresponding to the side chains of aromatic amino acids in the protein's primary structure and the alpha helices of the secondary structure of prolactin. In conclusion, using quasi-spherical silver nanoparticles as the SERS substrate, the Raman spectrum of human prolactin at physiological concentration was determined.

2.
J Surg Res ; 279: 657-665, 2022 11.
Article in English | MEDLINE | ID: mdl-35932720

ABSTRACT

INTRODUCTION: To determine whether the local administration of insulin glargine compared with placebo in nondiabetic patients with venous ulcers (VUs) leads to increased wound healing. METHODS: A randomized controlled trial using a split-plot design was performed in 36 adults with leg VUs >25 cm2 and more than 3 mo of evolution. Each hemi-wound received either 10 UI insulin glargine or saline solution once a day for 7 d. Size of the wounds, thermal asymmetry, the number of blood vessels, and the percentage area of collagen content in wound biopsies were assessed at baseline and after 7 d of treatment. Blood capillary glucose was monitored once a day after the insulin injection. RESULTS: After 7 d of treatment, the hemi-wounds treated with insulin glargine were significantly smaller, had less thermal asymmetry, more blood vessels, and more collagen content than the saline-treated side. Correlation between thermal asymmetry and the number of blood vessels was also found (r2 = 66.2, P < 0.001). No patient presented capillary glucose levels ≤3.3 mmol/L nor any adverse effects. CONCLUSIONS: In nondiabetic patients with chronic VUs, the topical administration of insulin glargine seems to be safe and promotes wound healing and tissue repair after 7 d of treatment.


Subject(s)
Varicose Ulcer , Adult , Blood Glucose , Humans , Insulin Glargine/pharmacology , Insulin Glargine/therapeutic use , Saline Solution , Ulcer , Varicose Ulcer/drug therapy , Wound Healing
3.
Biochim Biophys Acta Biomembr ; 1864(5): 183883, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35181295

ABSTRACT

Cells are dynamic systems with complex mechanical properties, regulated by the presence of different species of proteins capable to assemble (and disassemble) into filamentous forms as required by different cells functions. Giant unilamellar vesicles (GUVs) of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) are systems frequently used as a simplified model of cells because they offer the possibility of assaying separately different stimuli, which is no possible in living cells. Here we present a study of the effect of acting protein on mechanical properties of GUVs, when the protein is inside the vesicles in either monomeric G-actin or filamentous F-actin. For this, rabbit skeletal muscle G-actin is introduced inside GUVs by the electroformation method. Protein polymerization inside the GUVs is promoted by adding to the solution MgCl2 and the ion carrier A23187 to allow the transport of Mg+2 ions into the GUVs. To determine how the presence of actin changes the mechanical properties of GUVs, the vesicles are deformed by the application of an AC electric field in both cases with G-actin and with polymerized F-actin. The changes in shape of the vesicles are characterized by optical microscopy and from them the bending stiffness of the membrane are determined. It is found that G-actin has no appreciable effect on the bending stiffness of DMPC GUVs, but the polymerized actin makes the vesicles more rigid and therefore more resistant to deformations. This result is supported by evidence that actin filaments tend to accumulate near the membrane.


Subject(s)
Actins/chemistry , Dimyristoylphosphatidylcholine/chemistry , Electricity , Unilamellar Liposomes/chemistry , Actin Cytoskeleton/chemistry , Actins/metabolism , Animals , Calcimycin/chemistry , Magnesium Chloride/chemistry , Magnesium Chloride/metabolism , Microscopy , Muscle, Skeletal/metabolism , Rabbits , Surface Tension , Unilamellar Liposomes/metabolism , Viscosity
4.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736293

ABSTRACT

In this paper, we report a fast and easy method to detect histamine dihydrochloride using gold nanostars in colloidal aqueous solution as a highly active SERS platform with potential applications in biomedicine and food science. This colloid was characterized with SEM and UV⁻Vis spectroscopy. Also, numerical calculations were performed to estimate the plasmonic resonance and electric field amplification of the gold nanoparticles to compare the difference between nanospheres and nanostars. Finally, aqueous solutions of histamine dihydrochloride were prepared in a wide range of concentrations and the colloid was added to carry out SERS. We found SERS amplified the Raman signal of histamine by an enhancement factor of 1 . 0 × 10 7 , demonstrating the capability of the method to detect low concentrations of this amine molecule.

5.
J Immunoassay Immunochem ; 39(5): 471-484, 2018.
Article in English | MEDLINE | ID: mdl-30188776

ABSTRACT

Hafnium(IV) oxide is a material with properties that can increase the sensitivity, durability, and reliability of biosensors made from silicon dioxide and other semiconductor materials due to its high dielectric constant, thermodynamic stability, and the simplicity with which it can be deposited. This work describes the use of this material in biosensors based on field-effect transistors to detect ions and DNA, in immunosensors to detect an antigen-antibody complex, its use as a contrast material in computed tomography scans and the possibility of using it in optic biosensors in the infrared region. Its low cost and versatility in the field of biosensors is underscored.


Subject(s)
Biosensing Techniques , Hafnium/chemistry , Oxides/chemistry , Tomography Scanners, X-Ray Computed , Antigen-Antibody Complex/analysis , Antigen-Antibody Complex/immunology , DNA/analysis , Humans , Ions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...