Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Microbiol ; 130(3): 665-676, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32869458

ABSTRACT

Some meat dry products, including dry cured ham and dry beef cecina, are cured in cellars at moderately cold temperature allowing the growth of a lawn of fungi on their surface. During the curing process, frequently these products became contaminated with fungivore mites of the Acaridae family that feed on fungal mycelium and spores. AIMS: The aim of this article is to study the possible biological control of mites by fungi that form part of the normal microbiota of these meat products. METHODS AND RESULTS: Some yellow/orange pigmented fungi growing on the ham surface decreased the proliferation of mites; therefore, we isolated from ham and cecina xerophilic yellow/orange coloured fungal strains that were identified as members of the genus Eurotium (recently reclassified as Aspergillus section Aspergillus). Using molecular genetic tools, we have identified 158 strains as Eurotium rubrum (Aspergillus ruber), Eurotium repens (Aspergillus pseudoglaucus) and Eurotium chevalieri (Aspergillus chevalieri). Two strains, E. rubrum C47 and E. rubrum C49, showed strong miticidal activity. The toxic compound(s) are associated with the formation of cleistothecia. In synchronized mite development experiments, we observed that all stages of the mite lifecycle were inhibited by the E. rubrum C47 strain. In addition, we searched for miticidal activity in 13 culture collection Eurotium strains isolated from different habitats, and found that only one, Eurotium cristatum NRRL 4222 (Aspergillus cristatus) has a strong miticidal activity. CONCLUSIONS: These fungal strains have proliferated on the surface of ham and cecina for decades, and possibly have acquired miticidal activity as a resistance mechanism against fungivores. SIGNIFICANCE AND IMPACT OF THE STUDY: Biological control of infecting mites by favouring growth of E. rubrun C47, in place of the normal mixed population of Aspergillus and Penicillium, is an attractive approach to control mite infestations.


Subject(s)
Aspergillus , Biological Control Agents , Meat/microbiology , Mites , Pork Meat/microbiology , Animals , Aspergillus/isolation & purification , Cattle , Mites/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL