Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(4): 4200-4209, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27909927

ABSTRACT

Physical and thermal treatment was used to inactivate Trametes sp. SC-10 fungus. The resulting biomass was named BTV, characterized by analytical techniques such as SEM, EDX, FTIR, BET, and Barrett-Joyner-Halenda (BJH) model. pH, kinetic, and equilibrium adsorption studies with the Acid Blue 161 (AB-161) dye were investigated at 303.15 K. The kinetics of the biosorption process were examined at 600.00 and 1300 mg L-1, using pseudo-first-order, pseudo-second-order, and Avrami fractional-order models. The maximum biosorption capacity of BTV for AB-161 dye was 221.6 mg g-1. Considering the biosorption data and the functional groups of BTV, it can be inferred that the sorption mechanism of AB-161 is regulated by electrostatic interactions between ionized dye molecules and negative charges on BTV in an aqueous solution. Finally, the BTV was tested with a simulated effluent with 89.47% efficiency, presenting the BTV as a biosorbent for real effluents polluted with dyes.


Subject(s)
Biomass , Coloring Agents/isolation & purification , Coordination Complexes/isolation & purification , Naphthalenesulfonates/isolation & purification , Trametes , Water Pollutants, Chemical/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Kinetics
2.
Mycopathologia ; 180(5-6): 345-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26162643

ABSTRACT

Four strains of Hortaea werneckii were isolated from different substrates in Brazil (a salt marsh macrophyte, a bromeliad and a marine zoanthid) and had their identification confirmed by sequencing of the 26S rDNA D1/D2 domain or ITS region. Most of the strains were able to express amylase, lipase, esterase, pectinase and/or cellulase, enzymes that recognize components of plant cells as substrates, but did not express albuminase, keratinase, phospholipase and DNAse, whose substrates are animal-related. Urease production was positive for all isolates, while caseinase, gelatinase and laccase production were variable among the strains. All the strains grew in media containing up to 30% NaCl. We propose that the primary substrate associated with H. werneckii is plant-related, in special in saline environments, where the fungus may live as a saprophyte and decomposer. Infection of animal-associated substrates would be secondary, with the fungus acting as an opportunistic animal pathogen. All strains were resistant to fluconazole and presented high MIC for amphotericin B, while they were susceptible to all the other antifungal agents tested.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/drug effects , Ascomycota/enzymology , Environmental Microbiology , Hydrolases/analysis , Animals , Ascomycota/classification , Ascomycota/isolation & purification , Brazil , Culture Media/chemistry , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...