Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 92: 117-124, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28199953

ABSTRACT

The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm-2 were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm-2. The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm-2), demonstrating the feasibility of employing human blood as energy source.


Subject(s)
Alcohol Dehydrogenase/metabolism , Bioelectric Energy Sources , Ethanol/blood , Ethanol/metabolism , Saccharomyces cerevisiae/enzymology , Bioelectric Energy Sources/microbiology , Electricity , Electrodes , Enzymes, Immobilized/metabolism , Equipment Design , Humans , Lab-On-A-Chip Devices , Oxidation-Reduction
2.
Chem Commun (Camb) ; 51(13): 2536-9, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25566986

ABSTRACT

A membraneless nanofluidic fuel cell with flow-through electrodes that works with several fuels (individually or mixed): methanol, ethanol, glycerol and ethylene-glycol in alkaline media is presented. For this application, an efficient Cu@Pd electrocatalyst was synthesized and tested, resulting outstanding performance until now reported, opening the possibility of power nano-devices for multi-uses purposes, regardless of fuel re-charge employed.

3.
Lab Chip ; 14(24): 4596-8, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25312797

ABSTRACT

The use of three-dimensional flow-through nanoporous electrodes and the merging of a flow-through and air-breathing cathode were explored and successfully applied in a formic acid air-breathing nanofluidic fuel cell. The effects of fuel concentration, reaction stoichiometry and catalyst mass loading were investigated, resulting in power densities ranging from 28 to 100 mW cm(-2).

SELECTION OF CITATIONS
SEARCH DETAIL
...