Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732857

ABSTRACT

This study presents a pioneering approach that leverages advanced sensing technologies and data processing techniques to enhance the process of clinical documentation generation during medical consultations. By employing sophisticated sensors to capture and interpret various cues such as speech patterns, intonations, or pauses, the system aims to accurately perceive and understand patient-doctor interactions in real time. This sensing capability allows for the automation of transcription and summarization tasks, facilitating the creation of concise and informative clinical documents. Through the integration of automatic speech recognition sensors, spoken dialogue is seamlessly converted into text, enabling efficient data capture. Additionally, deep models such as Transformer models are utilized to extract and analyze crucial information from the dialogue, ensuring that the generated summaries encapsulate the essence of the consultations accurately. Despite encountering challenges during development, experimentation with these sensing technologies has yielded promising results. The system achieved a maximum ROUGE-1 metric score of 0.57, demonstrating its effectiveness in summarizing complex medical discussions. This sensor-based approach aims to alleviate the administrative burden on healthcare professionals by automating documentation tasks and safeguarding important patient information. Ultimately, by enhancing the efficiency and reliability of clinical documentation, this innovative method contributes to improving overall healthcare outcomes.


Subject(s)
Deep Learning , Humans , Speech Recognition Software
2.
Sensors (Basel) ; 23(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139521

ABSTRACT

Pain assessment is a critical aspect of healthcare, influencing timely interventions and patient well-being. Traditional pain evaluation methods often rely on subjective patient reports, leading to inaccuracies and disparities in treatment, especially for patients who present difficulties to communicate due to cognitive impairments. Our contributions are three-fold. Firstly, we analyze the correlations of the data extracted from biomedical sensors. Then, we use state-of-the-art computer vision techniques to analyze videos focusing on the facial expressions of the patients, both per-frame and using the temporal context. We compare them and provide a baseline for pain assessment methods using two popular benchmarks: UNBC-McMaster Shoulder Pain Expression Archive Database and BioVid Heat Pain Database. We achieved an accuracy of over 96% and over 94% for the F1 Score, recall and precision metrics in pain estimation using single frames with the UNBC-McMaster dataset, employing state-of-the-art computer vision techniques such as Transformer-based architectures for vision tasks. In addition, from the conclusions drawn from the study, future lines of work in this area are discussed.


Subject(s)
Shoulder Pain , Humans , Pain Measurement/methods
3.
Sensors (Basel) ; 23(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37050751

ABSTRACT

Certain fields present significant challenges when attempting to train complex Deep Learning architectures, particularly when the available datasets are limited and imbalanced. Real-time object detection in maritime environments using aerial images is a notable example. Although SeaDronesSee is the most extensive and complete dataset for this task, it suffers from significant class imbalance. To address this issue, we present POSEIDON, a data augmentation tool specifically designed for object detection datasets. Our approach generates new training samples by combining objects and samples from the original training set while utilizing the image metadata to make informed decisions. We evaluate our method using YOLOv5 and YOLOv8 and demonstrate its superiority over other balancing techniques, such as error weighting, by an overall improvement of 2.33% and 4.6%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...