Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(30): e2315778121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012827

ABSTRACT

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here, we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that this circuit primarily operates in epidermal cells, highlighting the relevance of tissue-specific clock-output connections for the regulation of plant development in resonance with the environment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Light , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Circadian Rhythm/physiology , Circadian Clocks/physiology , Circadian Clocks/genetics , DNA-Binding Proteins
2.
Methods Mol Biol ; 2686: 241-259, 2023.
Article in English | MEDLINE | ID: mdl-37540361

ABSTRACT

Carpels are the female reproductive organs of the flower, organized in a gynoecium, which is likely the most complex organ of the plant. The gynoecium provides protection for the ovules, helps to discriminate between male gametophytes, and facilitates successful pollination. After fertilization, it develops into a fruit, a specialized organ for seed protection and dispersal. To carry out all these functions, coordinated patterning and tissue specification within the developing gynoecium has to be achieved. In this chapter, we provide different methods to characterize defects in carpel morphogenesis and patterning associated with developmental mutations, as well as a list of reporter lines that can be used to facilitate genetic analyses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers , Seeds/genetics , Seeds/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...