Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 10: e86007, 2022.
Article in English | MEDLINE | ID: mdl-36761660

ABSTRACT

In this study, we report the observation of potential seed dispersers of the endemic to Mexico and narrowly distributed Ceratozamianorstogii (Zamiaceae). Camera traps were installed in front of two plants of Ceratozamianorstogii and cone phenology until their maturity and disintegration was determined. The female cone of Ceratozamianorstogii has a development of ten months, from the time it emerges until it disintegrates. We were able to identify three stages of cone development: 1) Pre-pollination phase, 2) Pollination phase and 3) Seed maturation phase. Our results support an animal-dispersal hypothesis in Ceratozamia. Three mammals [a mouse (Pteromiscus sp.), a southern spotted skunk (Spilogaleangustifrons) and a kinkajou (Potusflavus)] were recorded biting, carrying or removing seeds of Ceratozamianorstogii. The camera traps recorded no evidence of birds or other mammals coming to the cones to feed. Thus, interaction of frugivores with seeds occurs at night. The most frequent visitor was the mouse, followed by the southern spotted skunk and the kinkajou. Significant differences (GLM, p< 0.05) in visitor frequency and time for interaction were found between species. We believe that the mouse is probably the most effective seed disperser for Ceratozamianorstogii. The results presented here have evolutionary implications that can be scaled to the entire genus Ceratozamia. Specifically, short-distance dispersal promotes allopatric speciation in this group of plants.

2.
J Hered ; 110(2): 229-246, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30496534

ABSTRACT

The host dependence of mistletoes suggests that they track the distributions of their hosts. However, the factors that determine the geographic distribution of mistletoes are not well understood. In this study, the phylogeography of Psittacanthus sonorae was reconstructed by sequencing one nuclear (ITS) and two plastid (trnL-F and atpB-rbcL) regions of 148 plants from populations separated by the Sea of Cortez. Divergence time and gene flow were estimated to gain insight into the historical demography and geographic structuring of genetic variation. We also described and mapped the spatial distribution of suitable habitat occupied by P. sonorae and its most common host Bursera microphylla in the Sonoran Desert, along with their responses to Quaternary climate fluctuations using environmental data and ecological niche modeling (ENM). We detected environmental and genetic differentiation between the peninsular and continental P. sonorae populations. Population divergence occurred during the Pleistocene, around the time of the Last Glacial Maximum. No signals of population growth were detected, with net gene flow moving from the continent to the peninsula. ENM models indicate decoupled responses by the mistletoe and its main host to past climate changes. For the Last Interglacial to the present, most models produce only partial areas of overlap on both the peninsula and the continent. Our results support a scenario of Late-Pleistocene isolation and divergence with asymmetrical gene flow between peninsular and continental P. sonorae populations. Continental populations migrated to the peninsula and the spatial isolation probably produced genetic differentiation under different environmental conditions.


Subject(s)
Loranthaceae/classification , Loranthaceae/genetics , Phylogeny , Phylogeography , Biological Evolution , Desert Climate , Environment , Genetic Variation , Genetics, Population , Geography , Haplotypes , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...