Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 38(6): 1213-1222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744920

ABSTRACT

In contrast to B-cell precursor acute lymphoblastic leukemia (ALL), molecular subgroups are less well defined in T-lineage ALL. Comprehensive studies on molecular T-ALL subgroups have been predominantly performed in pediatric ALL patients. Currently, molecular characteristics are rarely considered for risk stratification. Herein, we present a homogenously treated cohort of 230 adult T-ALL patients characterized on transcriptome, and partly on DNA methylation and gene mutation level in correlation with clinical outcome. We identified nine molecular subgroups based on aberrant oncogene expression correlating to four distinct DNA methylation patterns. The subgroup distribution differed from reported pediatric T-ALL cohorts with higher frequencies of prognostic unfavorable subgroups like HOXA or LYL1/LMO2. A small subset (3%) of HOXA adult T-ALL patients revealed restricted expression of posterior HOX genes with aberrant activation of lncRNA HOTTIP. With respect to outcome, TLX1 (n = 44) and NKX2-1 (n = 4) had an exceptionally favorable 3-year overall survival (3y-OS) of 94%. Within thymic T-ALL, the non TLX1 patients had an inferior but still good prognosis. To our knowledge this is the largest cohort of adult T-ALL patients characterized by transcriptome sequencing with meaningful clinical follow-up. Risk classification based on molecular subgroups might emerge and contribute to improvements in outcome.


Subject(s)
DNA Methylation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adult , Male , Female , Prognosis , Middle Aged , Young Adult , Adolescent , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Biomarkers, Tumor/genetics , Mutation , Follow-Up Studies , Survival Rate , Transcriptome , Homeodomain Proteins/genetics
2.
Sci Rep ; 13(1): 972, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653435

ABSTRACT

FAT atypical cadherin 1 (FAT1), a transmembrane protein, is frequently mutated in various cancer types and has been described as context-dependent tumor suppressor or oncogene. The FAT1 gene is mutated in 12-16% of T-cell acute leukemia (T-ALL) and aberrantly expressed in about 54% of T-ALL cases contrasted with absent expression in normal T-cells. Here, we characterized FAT1 expression and profiled the methylation status from T-ALL patients. In our T-ALL cohort, 53% of patient samples were FAT1 positive (FAT1pos) compared to only 16% FAT1 positivity in early T-ALL patient samples. Aberrant expression of FAT1 was strongly associated with FAT1 promotor hypomethylation, yet a subset, mainly consisting of TLX1-driven T-ALL patient samples showed methylation-independent high FAT1 expression. Genes correlating with FAT1 expression revealed enrichment in WNT signaling genes representing the most enriched single pathway. FAT1 knockdown or knockout led to impaired proliferation and downregulation of WNT pathway target genes (CCND1, MYC, LEF1), while FAT1 overexpressing conveyed a proliferative advantage. To conclude, we characterized a subtype pattern of FAT1 gene expression in adult T-ALL patients correlating with promotor methylation status. FAT1 dependent proliferation and WNT signaling discloses an impact on deeper understanding of T-ALL leukemogenesis as a fundament for prospective therapeutic strategies.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Wnt Signaling Pathway , Cadherins/genetics , Cadherins/metabolism , Cell Proliferation/genetics , T-Lymphocytes/metabolism , Cell Line, Tumor
3.
BMC Cancer ; 15: 663, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26450156

ABSTRACT

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with the need for treatment optimization. Previously, high expression of Insulin-like growth factor binding protein 7 (IGFBP7), a member of the IGF system, was identified as negative prognostic factor in adult T-ALL patients. Since aberrant IGFBP7 expression was observed in a variety of neoplasia and was relevant for prognosis in T-ALL, we investigated the functional role of IGFBP7 in Jurkat and Molt-4 cells as in vitro models for T-ALL. METHODS: Jurkat and Molt-4 cells were stably transfected with an IGFBP7 over-expression vector or the empty vector as control. Proliferation of the cells was assessed by WST-1 assays and cell cycle status was measured by flow-cytometry after BrDU/7-AAD staining. The effect of IGFBP7 over-expression on sensitivity to cytostatic drugs was determined in AnnexinV/7-AAD assays. IGF1-R protein expression was measured by Western Blot and flow-cytometric analysis. IGF1-R associated gene expression profiles were generated from microarray gene expression data of 86 T-ALL patients from the Microarrays Innovations in Leukemia (MILE) multicenter study. RESULTS: IGFBP7-transfected Jurkat cells proliferated less, leading to a longer survival in a nutrient-limited environment. Both IGFBP7-transfected Jurkat and Molt-4 cells showed an arrest in the G0/G1 cell cycle phase. Furthermore, Jurkat IGFBP7-transfected cells were resistant to vincristine and asparaginase treatment. Surface expression and whole protein measurement of IGF1-R protein expression showed a reduced abundance of the receptor after IGFBP7 transfection in Jurkat cells. Interestingly, combination of the IGF1-R inhibitor NPV-AEW541 restored sensitivity to vincristine in IGFBP7-transfected cells. Additionally, IGF1-R associated GEP revealed an up-regulation of important drivers of T-ALL pathogenesis and regulators of chemo-resistance and apoptosis such as NOTCH1, BCL-2, PRKCI, and TP53. CONCLUSION: This study revealed a proliferation inhibiting effect of IGFBP7 by G0/G1 arrest and a drug resistance-inducing effect of IGFBP7 against vincristine and asparaginase in T-ALL. These results provide a model for the previously observed association between high IGFBP7 expression and chemotherapy failure in T-ALL patients. Since the resistance against vincristine was abolished by IGF1-R inhibition, IGFBP7 could serve as biomarker for patients who may benefit from therapies including IGF1-R inhibitors in combination with chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Insulin-Like Growth Factor Binding Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Somatomedin/antagonists & inhibitors , Receptors, Somatomedin/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression , Gene Expression Profiling , Humans , Jurkat Cells , Receptor, IGF Type 1 , Transcriptome
4.
Oncotarget ; 5(2): 351-62, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24504051

ABSTRACT

Overexpression of the oncogene ERG (ETS-related gene) is an adverse prognostic factor in acute myeloid and T-cell lymphoblastic leukemia (AML and T-ALL). We hypothesize that ERG overexpression is associated with primary drug resistance thereby influencing the outcome in leukemia. We previously reported a cell-line based model of ERG overexpression which induced a potentially chemo-resistant spindle shape cell type. Herein, we report a specific transcriptional gene signature for the observed spindle shaped morphology. Genes significantly over-expressed after ERG induction strongly resembled adhesive mesenchymal-like genes that included integrins (ITGA10, ITGB5, ITGB3, ITGA2B), CD44, and CD24. Interestingly, the mesenchymal-like signature was accompanied by the repression of DNA chromatin remodeling and DNA repair genes, such as CHEK1, EZH2, SUZ12, and DNMT3a. The ERG-induced mesenchymal-like signature positively correlated with TMPRSS2-ERG prostate tissues and invasive breast cancer mRNA expression datasets reflecting a general ERG-driven pattern of malignancy. Furthermore, inhibitors modulating ERG druggable pathways WNT, PKC, and AKT, and chemotherapeutic agent cytarabine revealed ERG-induced drug resistance. In particular, PKC412 treatment enhanced proliferative rates and promoted spindle shape formation in ERG-induced cells. Nilotinib and dasatinib were effective at abolishing ERG-induced cells. Moreover, ERG overexpression also led to an increase in double strand breaks. This report provides mechanistic clues into ERG-driven drug resistance in the poor prognostic group of high ERG expressers, provides insight to improved drug targeted therapies, and provides novel markers for a mesenchymal-like state in acute leukemia.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Trans-Activators/biosynthesis , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Cytarabine/pharmacology , DNA Repair , Dasatinib , Drug Resistance, Neoplasm , Gene Expression Profiling , Humans , K562 Cells , Mesoderm/metabolism , Mesoderm/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Signal Transduction , Thiazoles/pharmacology , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Trans-Activators/metabolism , Transcriptional Regulator ERG
SELECTION OF CITATIONS
SEARCH DETAIL
...