Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5599, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699907

ABSTRACT

Exciton bandwidths and exciton transport are difficult to control by material design. We showcase the intriguing excitonic properties in an organic semiconductor material with specifically tailored functional groups, in which extremely broad exciton bands in the near-infrared-visible part of the electromagnetic spectrum are observed by electron energy loss spectroscopy and theoretically explained by a close contact between tightly packing molecules and by their strong interactions. This is induced by the donor-acceptor type molecular structure and its resulting crystal packing, which induces a remarkable anisotropy that should lead to a strongly directed transport of excitons. The observations and detailed understanding of the results yield blueprints for the design of molecular structures in which similar molecular features might be used to further explore the tunability of excitonic bands and pave a way for organic materials with strongly enhanced transport and built-in control of the propagation direction.

2.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175925

ABSTRACT

This short review reports the surprising phenomenon of nuclear hyperpolarization occurring in chemical reactions, which is called CIDNP (chemically induced dynamic nuclear polarization) or photo-CIDNP if the chemical reaction is light-driven. The phenomenon occurs in both liquid and solid-state, and electron transfer systems, often carrying flavins as electron acceptors, are involved. Here, we explain the physical and chemical properties of flavins, their occurrence in spin-correlated radical pairs (SCRP) and the possible involvement of flavin-carrying SCRPs in animal magneto-reception at earth's magnetic field.


Subject(s)
Flavoproteins , Magnetic Fields , Animals , Electron Transport , Flavins/chemistry
3.
J Am Chem Soc ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37022930

ABSTRACT

Efficient organic electronic devices are fabricated from both small molecules and disperse polymers, but materials with characteristics in between remain largely unexplored. Here, we present a gram-scale synthesis for a series of discrete n-type oligomers comprising alternating naphthalene diimide (NDI) and bithiophene (T2). Using C-H activation, discrete oligomers of type T2-(NDI-T2)n (n ≤ 7) and persistence lengths up to ∼10 nm are made. The absence of protection/deprotection reactions and the mechanistic nature of Pd-catalyzed C-H activation allow one to produce symmetrically terminated species almost exclusively, which is key to the fast preparation, high yields, and the general success of the reaction pathway. The reaction scope includes different thiophene-based monomers, end-capping to yield NDI-(T2-NDI)n (n ≤ 8), and branching at T2 units by nonselective C-H activation under certain conditions. We show how the optical, electronic, thermal, and structural properties depend on oligomer length along with a comparison to the disperse, polymeric analogue PNDIT2. From theory and experiments, we find that the molecular energy levels are not affected by chain length resulting from the strong donor-acceptor system. Absorption maxima saturate for n = 4 in vacuum and for n = 8 in solution. Linear oligomers T2-(NDI-T2)n are highly crystalline with large melting enthalpies up to 33 J/g; NDI-terminated oligomers show reduced crystallinity, stronger supercooling, and more phase transitions. Branched oligomers and those with bulky thiophene comonomers are amorphous. Large oligomers exhibit similar packing characteristics compared to PNDIT2, making these oligomers ideal models to study length-structure-function relationships at constant energy levels.

4.
Sci Rep ; 13(1): 1685, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717636

ABSTRACT

We investigate a family of hexagonal 2D covalent organic frameworks (COFs) with phenyl and biphenyl spacer units and different chemical linker species. Chemical trends are elucidated and attributed to microscopic properties of the [Formula: see text]-electron-system spanned by atomic [Formula: see text]-orbitals. We systematically investigate the electronic structure, delocalization of electronic states, effects of disorder, bond torsion, and doping, and correlate these with variable [Formula: see text]-conjugation and nucleus-independent chemical shift (NICS) aromaticity. Molecular orbitals are obtained from maximally localized Wannier functions that have [Formula: see text]- and [Formula: see text]-character, forming distinct [Formula: see text]- and [Formula: see text]-bands for all valence states. The Wannier-orbital description goes beyond simple tight-binding models and enables a detailed understanding of the electronic topology, effective electronic coupling and delocalization. It is shown that a meaningful comparison between COFs with different chemical elements can only be made by examining the entire [Formula: see text]-electron system, while a comparison of individual bands (e.g., bands near the Fermi energy) can be a insufficient to derive general design rules for linker and spacer monomer selection. We further identify delocalized states that are spread across tens or hundreds of pores of the 2D COFs and analyze their robustness against structural and energetic disorders like out-of-plane rotations of molecular fragments, different strength of energetic disorder and energetic shifts due to chemical doping.

5.
Sci Adv ; 8(13): eabl9264, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35353575

ABSTRACT

We investigate the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. We show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors, exceeding 20 µW m-1 K-2 at 80°C. Theoretical studies give insight into the energy landscape of the heterostructures and its influence on qualitative trends of the Seebeck coefficient. Our results show that modulation doping together with high-mobility crystalline organic semiconductor films is a previosly unexplored strategy for achieving high-performance organic thermoelectrics.

6.
Adv Mater ; 34(22): e2101784, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34396598

ABSTRACT

A blend of a low-optical-gap diketopyrrolopyrrole polymer and a fullerene derivative, with near-zero driving force for electron transfer, is investigated. Using femtosecond transient absorption and electroabsorption spectroscopy, the charge transfer (CT) and recombination dynamics as well as the early-time transport are quantified. Electron transfer is ultrafast, consistent with a Marcus-Levich-Jortner description. However, significant charge recombination and unusually short excited (S1 ) and CT state lifetimes (≈14 ps) are observed. At low S1 -CT offset, a short S1 lifetime mediates charge recombination because: i) back-transfer from the CT to the S1 state followed by S1 recombination occurs and ii) additional S1 -CT hybridization decreases the CT lifetime. Both effects are confirmed by density functional theory calculations. In addition, relatively slow (tens of picoseconds) dissociation of charges from the CT state is observed, due to low local charge mobility. Simulations using a four-state kinetic model entailing the effects of energetic disorder reveal that the free charge yield can be increased from the observed 12% to 60% by increasing the S1 and CT lifetimes to 150 ps. Alternatively, decreasing the interfacial CT state disorder while increasing bulk disorder of free charges enhances the yield to 65% in spite of the short lifetimes.

7.
Phys Rev Lett ; 127(1): 016601, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270291

ABSTRACT

We derive the general Kubo formula in a form that solely utilizes the time evolution of displacement operators. The derivation is based on the decomposition of the linear response function into its time-symmetric and time-antisymmetric parts. We relate this form to the well-known fluctuation-dissipation formula and discuss theoretical and numerical aspects of it. The approach is illustrated with an analytical example for magnetic resonance as well as a numerical example where we analyze the electrical conductivity tensor and the Chern insulating state of the disordered Haldane model. We introduce a highly efficient time-domain approach that describes the quantum dynamics of the resistivity of this model with an at least 1000-fold better performance in comparison to existing time-evolution schemes.

8.
Nat Mater ; 20(10): 1407-1413, 2021 10.
Article in English | MEDLINE | ID: mdl-34112978

ABSTRACT

Blending organic molecules to tune their energy levels is currently being investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy and electron affinity can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here we show that the energy gap of organic semiconductors can also be tuned by blending. We use oligothiophenes with different numbers of thiophene rings as an example and investigate their structure and electronic properties. Photoelectron spectroscopy and inverse photoelectron spectroscopy show tunability of the single-particle gap, with the optical gaps showing similar, but smaller, effects. Theoretical analysis shows that this tuning is mainly caused by a change in the dielectric constant with blend ratio. Further studies will explore the practical impact of this energy-level engineering strategy for optoelectronic devices.

9.
Angew Chem Int Ed Engl ; 60(25): 13853-13858, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-33848044

ABSTRACT

n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6 H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2 ≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3).

10.
J Chem Theory Comput ; 17(2): 1266-1275, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33434021

ABSTRACT

The morphology of small-molecule organic semiconducting materials can vary from single crystals via polycrystalline films with varying grain sizes to amorphous structures, depending on the process conditions. This structural variety affects the electronic properties and, thus, the performance of organic electronic devices. A nucleation-equilibration approach is investigated, whose focus is on the construction of morphologies with controlled variations in the average grain size. Its computational requirements are low because nucleation is purely based on geometrical considerations, thus allowing the construction of model systems of experimentally relevant sizes. Its application is demonstrated for C60 and pentacene by generating single-component films that vary from amorphous to crystalline structures. It is further generalized to two-component films and applied to C60: pentacene blends as well as dilute n-doped C60 structures. When combined with electronic structure calculations in the future, the nucleation-equilibration approach can offer insights into the impact of polycrystallinity on electronic and charge-transport properties in the absence of any knowledge about the growth mechanism and for a broad set of systems.

11.
ACS Appl Mater Interfaces ; 12(36): 40566-40571, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805922

ABSTRACT

The air sensitivity of n-doped layers is crucial for the long-term stability of organic electronic devices. Although several air-stable and highly efficient n-dopants have been developed, the reason for the varying air sensitivity between different n-doped layers, in which the n-dopant molecules are dispersed, is not fully understood. In contrast to previous studies that compared the air stability of doped films with the energy levels of neat host or dopant layers, we trace back the varying degree of air sensitivity to the energy levels of integer charge transfer states (ICTCs) formed by host anions and dopant cations. Our data indicate a universal limit for the ionization energy of ICTCs above which the n-doped semiconductors are air-stable.

12.
Nat Commun ; 11(1): 2047, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32321910

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Commun ; 11(1): 1488, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32198376

ABSTRACT

The low-energy edge of optical absorption spectra is critical for the performance of solar cells, but is not well understood in the case of organic solar cells (OSCs). We study the microscopic origin of exciton bands in molecular blends and investigate their role in OSCs. We simulate the temperature dependence of the excitonic density of states and low-energy absorption features, including low-frequency molecular vibrations and multi-exciton hybridisation. For model donor-acceptor blends featuring charge-transfer excitons, our simulations agree very well with temperature-dependent experimental absorption spectra. We unveil that the quantum effect of zero-point vibrations, mediated by electron-phonon interaction, causes a substantial exciton bandwidth and reduces the open-circuit voltage, which is predicted from electronic and vibronic molecular parameters. This effect is surprisingly strong at room temperature and can substantially limit the OSC's efficiency. Strategies to reduce these vibration-induced voltage losses are discussed for a larger set of systems and different heterojunction geometries.

14.
Nat Commun ; 11(1): 833, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32047157

ABSTRACT

Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.

15.
Nat Commun ; 10(1): 2466, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31165738

ABSTRACT

The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the π-π-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor-acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers.

16.
Chem Sci ; 10(14): 4025-4031, 2019 Apr 14.
Article in English | MEDLINE | ID: mdl-31105925

ABSTRACT

Controlling the aromaticity and electronic properties of curved π-conjugated systems has been increasingly attractive for the development of novel functional materials for organic electronics. Herein, we demonstrate an efficient synthesis of two novel wave-shaped polycyclic hydrocarbons (PHs) 1 and 2 with 64 π-electrons. Among them, the wave-shaped π-conjugated carbon skeleton of 2 is unambiguously revealed by single-crystal X-ray crystallography analysis. The wave-shaped geometry is induced by steric congestion in the cove and fjord regions. Remarkably, the aromaticity of these two structural isomers can be tailored by the annulated direction of cyclopenta[b]fluorene units. Isomer 1 (Eoptg = 1.13 eV) behaves as a closed-shell compound with weakly antiaromatic feature, whereas its structural isomer 2 displays a highly stable tetraradical character (y 0 = 0.23; y 1 = 0.22; t 1/2 = 91 days) with a narrow optical energy gap of 0.96 eV. Moreover, the curved PH 2 exhibits remarkable ambipolar charge transport in solution-processed organic thin-film transistors. Our research provides a new insight into the design and synthesis of stable functional curved aromatics with multiradical characters.

17.
Nat Mater ; 18(3): 242-248, 2019 03.
Article in English | MEDLINE | ID: mdl-30692647

ABSTRACT

Doped organic semiconductors typically exhibit a thermal activation of their electrical conductivity, whose physical origin is still under scientific debate. In this study, we disclose relationships between molecular parameters and the thermal activation energy (EA) of the conductivity, revealing that charge transport is controlled by the properties of host-dopant integer charge transfer complexes (ICTCs) in efficiently doped organic semiconductors. At low doping concentrations, charge transport is limited by the Coulomb binding energy of ICTCs, which can be minimized by systematic modification of the charge distribution on the individual ions. The investigation of a wide variety of material systems reveals that static energetic disorder induced by ICTC dipole moments sets a general lower limit for EA at large doping concentrations. The impact of disorder can be reduced by adjusting the ICTC density and the intramolecular relaxation energy of host ions, allowing an increase of conductivity by many orders of magnitude.

18.
J Phys Chem Lett ; 9(18): 5496-5501, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30187758

ABSTRACT

Organic solar cells with an electron donor diluted in a fullerene matrix have a reduced density of donor-fullerene contacts, resulting in decreased free-carrier recombination and increased open-circuit voltages. However, the low donor concentration prevents the formation of percolation pathways for holes. Notwithstanding, high (>75%) external quantum efficiencies can be reached, suggesting an effective hole-transport mechanism. Here, we perform a systematic study of the hole mobilities of 18 donors, diluted at ∼6 mol % in C60, with varying frontier energy level offsets and relaxation energies. We find that hole transport between isolated donor molecules occurs by long-range tunneling through several fullerene molecules, with the hole mobilities being correlated to the relaxation energy of the donor. The transport mechanism presented in this study is of general relevance to bulk heterojunction organic solar cells where mixed phases of fullerene containing a small fraction of a donor material or vice versa are present as well.

19.
Nat Mater ; 17(5): 439-444, 2018 05.
Article in English | MEDLINE | ID: mdl-29483635

ABSTRACT

Doping plays a crucial role in semiconductor physics, with n-doping being controlled by the ionization energy of the impurity relative to the conduction band edge. In organic semiconductors, efficient doping is dominated by various effects that are currently not well understood. Here, we simulate and experimentally measure, with direct and inverse photoemission spectroscopy, the density of states and the Fermi level position of the prototypical materials C60 and zinc phthalocyanine n-doped with highly efficient benzimidazoline radicals (2-Cyc-DMBI). We study the role of doping-induced gap states, and, in particular, of the difference Δ1 between the electron affinity of the undoped material and the ionization potential of its doped counterpart. We show that this parameter is critical for the generation of free carriers and influences the conductivity of the doped films. Tuning of Δ1 may provide alternative strategies to optimize the electronic properties of organic semiconductors.

20.
Angew Chem Int Ed Engl ; 56(14): 3920-3924, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28267257

ABSTRACT

On-chip micro-supercapacitors (MSCs) are important Si-compatible power-source backups for miniaturized electronics. Despite their tremendous advantages, current on-chip MSCs require harsh processing conditions and typically perform like resistors when filtering ripples from alternating current (AC). Herein, we demonstrated a facile layer-by-layer method towards on-chip MSCs based on an azulene-bridged coordination polymer framework (PiCBA). Owing to the good carrier mobility (5×10-3  cm2 V-1 s-1 ) of PiCBA, the permanent dipole moment of azulene skeleton, and ultralow band gap of PiCBA, the fabricated MSCs delivered high specific capacitances of up to 34.1 F cm-3 at 50 mV s-1 and a high volumetric power density of 1323 W cm-3 . Most importantly, such MCSs exhibited AC line-filtering performance (-73° at 120 Hz) with a short resistance-capacitance constant of circa 0.83 ms.

SELECTION OF CITATIONS
SEARCH DETAIL
...