Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Anat ; 225: 11-16, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31125600

ABSTRACT

"Mortui vivos docent". Learning from donated bodies is widely considered a corner stone in pre-clinical education, advanced clinical training, and scientific progress in medicine. Making such use of dead human bodies must, of course, accord with high ethical standards and legal constraints. Piety and respect towards donors require using their remains (i) for valuable purposes, (ii) with what we call 'practical decency', (iii) in an efficient way, and (iv) with the utmost safety for all parties involved. With regard to these goals, practical aspects of preservation, safekeeping procedures (for up to several years), and complete documentation become of great importance, but have so far only been realized unsatisfactorily. Here, we describe the new Safe-Keeping System-Münster (SKS-Münster) that has been developed and implemented in the Anatomy Department of the University of Münster. Integrated components of the system include a paternoster transport system, a removal station with ventilation and an air barrier, RFID transponder technology, and an easy to use software package allowing the system together to provide all required functions in an unprecedented way.


Subject(s)
Cadaver , Dissection/ethics , Dissection/standards , Preservation, Biological/ethics , Preservation, Biological/standards , Tissue and Organ Procurement/standards , Anatomy/education , Cryopreservation/ethics , Cryopreservation/standards , Education, Medical/ethics , Education, Medical/standards , Embalming/ethics , Embalming/standards , Germany , Humans , Pathology/education , Safety , Schools, Medical/ethics , Schools, Medical/standards , Students, Medical , Tissue and Organ Procurement/ethics , Tissue and Organ Procurement/legislation & jurisprudence
2.
J Biomed Opt ; 8(1): 26-32, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12542376

ABSTRACT

This work describes the time-resolved fluorescence characteristics of two different photosensitizers in single cells, in detail mTHPC and 5-ALA induced PPIX, which are currently clinically used in photodynamic therapy. The fluorescence lifetime of the drugs was determined in the cells from time-gated spectra as well as single photon counting, using a picosecond pulsed diode laser for fluorescence excitation. The diode laser, which emits pulses at 398 nm with 70 ps full width at half maximum duration, was coupled to a confocal laser scanning microscope. For time-resolved spectroscopy a setup consisting of a Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module was used to determine the fluorescence lifetime from single spots and to record lifetime images. The fluorescence lifetime of mTHPC decreased from 7.5 to 5.5 ns during incubation from 1 to 6 h. This decrease was probably attributed to enhanced formation of aggregates during incubation. Fluorescence lifetime imaging showed that longer lifetimes were correlated with accumulation in the cytoplasm in the neighborhood of the cell nucleus, whereas shorter lifetimes were found in the outer cytoplasm. For cells that were incubated with 5-ALA, a fluorescence lifetime of 7.4 ns was found for PPIX; a shorter lifetime at 3.6 ns was probably attributed to photoproducts and aggregates of PPIX. In contrast from fluorescence intensity images alone, different fluorescence species could not be distinguished. However, in the lifetime image a structured fluorescence distribution in the cytoplasm was correlated with the longer lifetime and probably coincides with mitochondria. In conclusion, picosecond diode lasers coupled to a laser scanning microscope equipped with appropriate detection units allows time-resolved spectroscopy and lifetime imaging with high spatial resolution and provides numerous possibilities in cellular and pharmaceutical research.


Subject(s)
Microscopy, Confocal/instrumentation , Photosensitizing Agents/radiation effects , Spectrometry, Fluorescence/instrumentation , Animals , Cell Line , Humans , Lasers , Mesoporphyrins/chemistry , Mesoporphyrins/radiation effects , Mesoporphyrins/therapeutic use , Optics and Photonics/instrumentation , Photochemotherapy/instrumentation , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Protoporphyrins/chemistry , Protoporphyrins/radiation effects , Protoporphyrins/therapeutic use , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...