Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230171, 2024.
Article in English | MEDLINE | ID: mdl-38372977

ABSTRACT

Anther development is a complex process essential for plant reproduction and crop yields. In recent years, significant progress has been made in the identification and characterization of the bHLH transcription factor family involved in anther regulation in rice and Arabidopsis, two extensively studied model plants. Research on bHLH transcription factors has unveiled their crucial function in controlling tapetum development, pollen wall formation, and other anther-specific processes. By exploring deeper into regulatory mechanisms governing anther development and bHLH transcription factors, we can gain important insights into plant reproduction, thereby accelerating crop yield improvement and the development of new plant breeding strategies. This review provides an overview of the current knowledge on anther development in rice and Arabidopsis, emphasizing the critical roles played by bHLH transcription factors in this process. Recent advances in gene expression analysis and functional studies are highlighted, as they have significantly enhanced our understanding of the regulatory networks involved in anther development.

2.
Braz J Microbiol ; 52(3): 1371-1383, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33834385

ABSTRACT

Saline stress is one of the abiotic stresses that most compromises the yield of crops and can be mitigated by plant growth-promoting rhizobacteria (PGPR). This work characterized rhizobacteria isolates from the genus Streptomyces as PGPR and evaluated their role on growth and alleviation of the effects caused by saline stress in maize (Zea mays L.). Production of indolic compounds (IC), siderophores, ACC deaminase, phenazines, and promotion of plant growth were determined to characterize bacterial isolates. Salinity tolerance was accessed by culturing the Streptomyces isolates under NaCl increasing concentrations (0-300 mM). Four Streptomyces isolates exhibiting PGPR traits and salinity tolerance were selected and their effect on tolerance of maize plants to saline stress was evaluated. Plants obtained from bacterized seeds and submitted to 100 and 300 mM NaCl were used. All Streptomyces spp. produced IC and siderophores, CLV178 being the best producer of these two compounds. ACC deaminase was detected in six of the 10 isolates (CLV95, CLV97, CLV127, CLV179, CLV193, and CLV205), while phenazines were found only in CLV186 and CLV194. All isolates were tolerant to salinity, growing at concentrations up to 300 mM NaCl, with exception of CLV188. Increased concentrations of IC were detected in most of the isolates exposed to salinity. CLV97 and CLV179 significantly promoted growth of roots and leaves of maize plants and attenuated the negative effects of salinity on plant growth. Root colonization by Streptomyces spp. was confirmed in plants cultivated 20 days under saline stress.


Subject(s)
Salt Stress , Soil Microbiology , Streptomyces , Zea mays , Carbon-Carbon Lyases , Phenazines , Plant Leaves/growth & development , Plant Roots/growth & development , Siderophores , Sodium Chloride , Zea mays/growth & development , Zea mays/microbiology
3.
Braz J Microbiol ; 51(4): 1861-1871, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32529561

ABSTRACT

Plant growth-promoting bacteria such as Streptomyces are an attractive alternative for increasing the sustainability of agricultural systems. In this study, Streptomyces isolates obtained from rhizosphere soil of plants in the family Fabaceae were characterized for their plant growth-promoting traits, including the production of siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), and phenazines. Soybean seeds were bacterized with selected isolates to test growth promotion. All isolates produced IAA, and the isolate CLV45 was the most efficient, reaching 398.53 mg of IAA per gram of cells. CLV41, CLV45, and CLV46 showed high activity for ACC deaminase whereas CLV42, CLV44, and CLV46 were efficient in siderophore production. Pyocyanin was detected in all isolates; CLV41, CLV43, and CLV45 produced phenazine-carboxylic acid as well. Selected for IAA and ACC deaminase production combined with production of siderophores and phenazines, CLV42, CLV44, and CLV45 were tested for their growth promotion potential. Seed bacterization with CLV45 resulted in plants with increased shoot growth (36.63%) and dry mass (17.97%) compared to control plants. Results suggest that moderate or high levels of auxin and ACC deaminase production by the isolate CLV45 positively affected the growth of soybean plants, making it a strong candidate for further studies on biofertilizer formulation.


Subject(s)
Glycine max/growth & development , Glycine max/microbiology , Rhizosphere , Seeds/microbiology , Streptomyces/physiology , Agriculture/methods , Plant Roots/microbiology , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL