Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metrologia ; 57(1)2020.
Article in English | MEDLINE | ID: mdl-32127725

ABSTRACT

The unique properties of the quantum Hall effect allow one to revisit traditional measurement circuits with a new flavour. In this paper we present the first realization of a quantum Hall Kelvin bridge for the calibration of standard resistors directly against the quantum Hall resistance. The bridge design is particularly simple and requires a minimal number of instruments. The implementation here proposed is based on the bridge-on-a-chip, an integrated circuit composed of three graphene quantum Hall elements and superconducting wiring. The accuracy achieved in the calibration of a 12 906Ω standard resistor is of a few parts in 108, at present mainly limited by the prototype device and the interferences in the current implementation, with the potential to achieve few parts in 109, which is the level of the systematic uncertainty of the quantum Hall Kelvin bridge itself.

2.
Sci Rep ; 9(1): 10655, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31337774

ABSTRACT

Electronic applications of large-area graphene films require rapid and accurate methods to map their electrical properties. Here we present the first electrical resistance tomography (ERT) measurements on large-area graphene samples, obtained with a dedicated measurement setup and reconstruction software. The outcome of an ERT measurement is a map of the graphene electrical conductivity. The same setup allows to perform van der Pauw (vdP) measurements of the average conductivity. We characterised the electrical conductivity of chemical-vapour deposited graphene samples by performing ERT, vdP and scanning terahertz time-domain spectroscopy (TDS), the last one by means of a commercial instrument. The measurement results are compared and discussed, showing the potential of ERT as an accurate and reliable technique for the electrical characterization of graphene samples.

3.
Carbon N Y ; 1542019.
Article in English | MEDLINE | ID: mdl-32165760

ABSTRACT

We have demonstrated the millimeter-scale fabrication of monolayer epitaxial graphene p-n junction devices using simple ultraviolet photolithography, thereby significantly reducing device processing time compared to that of electron beam lithography typically used for obtaining sharp junctions. This work presents measurements yielding nonconventional, fractional multiples of the typical quantized Hall resistance at ν = 2 (R H ≈ 12906 Ω) that take the form: a b R H . Here, a and b have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of R H. Additionally, we provide a framework for exploring future device configurations using the LTspice circuit simulator as a guide to understand the abundance of available fractions one may be able to measure. These results support the potential for drastically simplifying device processing time and may be used for many other two-dimensional materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...