Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 44(6): 2806-2826, 2022 06.
Article in English | MEDLINE | ID: mdl-33320810

ABSTRACT

The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making systems. In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising research direction. Defined as a self-supervised learning task, video prediction represents a suitable framework for representation learning, as it demonstrated potential capabilities for extracting meaningful representations of the underlying patterns in natural videos. Motivated by the increasing interest in this task, we provide a review on the deep learning methods for prediction in video sequences. We first define the video prediction fundamentals, as well as mandatory background concepts and the most used datasets. Next, we carefully analyze existing video prediction models organized according to a proposed taxonomy, highlighting their contributions and their significance in the field. The summary of the datasets and methods is accompanied with experimental results that facilitate the assessment of the state of the art on a quantitative basis. The paper is summarized by drawing some general conclusions, identifying open research challenges and by pointing out future research directions.


Subject(s)
Deep Learning , Algorithms
2.
Sensors (Basel) ; 20(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198083

ABSTRACT

In recent years the advances in Artificial Intelligence (AI) have been seen to play an important role in human well-being, in particular enabling novel forms of human-computer interaction for people with a disability. In this paper, we propose a sEMG-controlled 3D game that leverages a deep learning-based architecture for real-time gesture recognition. The 3D game experience developed in the study is focused on rehabilitation exercises, allowing individuals with certain disabilities to use low-cost sEMG sensors to control the game experience. For this purpose, we acquired a novel dataset of seven gestures using the Myo armband device, which we utilized to train the proposed deep learning model. The signals captured were used as an input of a Conv-GRU architecture to classify the gestures. Further, we ran a live system with the participation of different individuals and analyzed the neural network's classification for hand gestures. Finally, we also evaluated our system, testing it for 20 rounds with new participants and analyzed its results in a user study.


Subject(s)
Deep Learning , Gestures , Hand , Rehabilitation , Video Games , Algorithms , Artificial Intelligence , Electromyography , Humans , Neural Networks, Computer , Pattern Recognition, Automated
3.
Pattern Anal Appl ; 22(4): 1667-1685, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31579391

ABSTRACT

Physical traits such as the shape of the hand and face can be used for human recognition and identification in video surveillance systems and in biometric authentication smart card systems, as well as in personal health care. However, the accuracy of such systems suffers from illumination changes, unpredictability, and variability in appearance (e.g. occluded faces or hands, cluttered backgrounds, etc.). This work evaluates different statistical and chrominance models in different environments with increasingly cluttered backgrounds where changes in lighting are common and with no occlusions applied, in order to get a reliable neural network reconstruction of faces and hands, without taking into account the structural and temporal kinematics of the hands. First a statistical model is used for skin colour segmentation to roughly locate hands and faces. Then a neural network is used to reconstruct in 3D the hands and faces. For the filtering and the reconstruction we have used the growing neural gas algorithm which can preserve the topology of an object without restarting the learning process. Experiments conducted on our own database but also on four benchmark databases (Stirling's, Alicante, Essex, and Stegmann's) and on deaf individuals from normal 2D videos are freely available on the BSL signbank dataset. Results demonstrate the validity of our system to solve problems of face and hand segmentation and reconstruction under different environmental conditions.

4.
Sci Data ; 6(1): 162, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467361

ABSTRACT

In this paper, we propose a new dataset for outdoor depth estimation from single and stereo RGB images. The dataset was acquired from the point of view of a pedestrian. Currently, the most novel approaches take advantage of deep learning-based techniques, which have proven to outperform traditional state-of-the-art computer vision methods. Nonetheless, these methods require large amounts of reliable ground-truth data. Despite there already existing several datasets that could be used for depth estimation, almost none of them are outdoor-oriented from an egocentric point of view. Our dataset introduces a large number of high-definition pairs of color frames and corresponding depth maps from a human perspective. In addition, the proposed dataset also features human interaction and great variability of data, as shown in this work.

5.
Sensors (Basel) ; 19(2)2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30658480

ABSTRACT

Every year, a significant number of people lose a body part in an accident, through sickness or in high-risk manual jobs. Several studies and research works have tried to reduce the constraints and risks in their lives through the use of technology. This work proposes a learning-based approach that performs gesture recognition using a surface electromyography-based device, the Myo Armband released by Thalmic Labs, which is a commercial device and has eight non-intrusive low-cost sensors. With 35 able-bodied subjects, and using the Myo Armband device, which is able to record data at about 200 MHz, we collected a dataset that includes six dissimilar hand gestures. We used a gated recurrent unit network to train a system that, as input, takes raw signals extracted from the surface electromyography sensors. The proposed approach obtained a 99.90% training accuracy and 99.75% validation accuracy. We also evaluated the proposed system on a test set (new subjects) obtaining an accuracy of 77.85%. In addition, we showed the test prediction results for each gesture separately and analyzed which gestures for the Myo armband with our suggested network can be difficult to distinguish accurately. Moreover, we studied for first time the gated recurrent unit network capability in gesture recognition approaches. Finally, we integrated our method in a system that is able to classify live hand gestures.


Subject(s)
Costs and Cost Analysis , Electromyography/economics , Electromyography/instrumentation , Gestures , Hand/physiology , Humans , Neural Networks, Computer , Pattern Recognition, Automated , Signal Processing, Computer-Assisted
6.
Neural Comput Appl ; 29(10): 903-919, 2018.
Article in English | MEDLINE | ID: mdl-29628624

ABSTRACT

This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.

7.
Sensors (Basel) ; 14(5): 8547-76, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24834909

ABSTRACT

The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.

8.
Neural Netw ; 32: 196-208, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22386599

ABSTRACT

This paper aims to address the ability of self-organizing neural network models to manage real-time applications. Specifically, we introduce fAGNG (fast Autonomous Growing Neural Gas), a modified learning algorithm for the incremental model Growing Neural Gas (GNG) network. The Growing Neural Gas network with its attributes of growth, flexibility, rapid adaptation, and excellent quality of representation of the input space makes it a suitable model for real time applications. However, under time constraints GNG fails to produce the optimal topological map for any input data set. In contrast to existing algorithms, the proposed fAGNG algorithm introduces multiple neurons per iteration. The number of neurons inserted and input data generated is controlled autonomous and dynamically based on a priory or online learnt model. A detailed study of the topological preservation and quality of representation depending on the neural network parameter selection has been developed to find the best alternatives to represent different linear and non-linear input spaces under time restrictions or specific quality of representation requirements.


Subject(s)
Algorithms , Artificial Intelligence , Neural Networks, Computer , Computer Systems , Databases, Factual , Gestures , Humans , Image Processing, Computer-Assisted , Linear Models , Models, Neurological , Neurons/physiology , Nonlinear Dynamics , Regression Analysis , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...