Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Med Phys ; 49(9): 5841-5854, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35751864

ABSTRACT

BACKGROUND: Estimates of regional left ventricular (LV) strains provide additional information to global function parameters such as ejection fraction (EF) and global longitudinal strain (GLS) and are more sensitive in detecting abnormal regional cardiac function. The accurate and reproducible assessment of regional cardiac function has implications in the management of various cardiac diseases such as heart failure, myocardial ischemia, and dyssynchrony. PURPOSE: To develop a method that yields highly reproducible, high-resolution estimates of regional endocardial strains from 4DCT images. METHODS: A method for estimating regional LV endocardial circumferential ( ε c c ) $( {{\epsilon }_{cc}} )$ and longitudinal ( ε l l ${\epsilon }_{ll}$ ) strains from 4DCT was developed. Point clouds representing the LV endocardial surface were extracted for each time frame of the cardiac cycle from 4DCT images. 3D deformation fields across the cardiac cycle were obtained by registering the end diastolic point cloud to each subsequent point cloud in time across the cardiac cycle using a 3D point-set registration technique. From these deformation fields, ε c c and ε l l ${\epsilon }_{cc}\ {\rm{and\ }}{\epsilon }_{ll}$ were estimated over the entire LV endocardial surface by fitting an affine transformation with maximum likelihood estimation. The 4DCT-derived strains were compared with strains estimated in the same subjects by cardiac magnetic resonance (CMR); twenty-four subjects had CMR scans followed by 4DCT scans acquired within a few hours. Regional LV circumferential and longitudinal strains were estimated from the CMR images using a commercially available feature tracking software (cvi42). Global circumferential strain (GCS) and global longitudinal strain (GLS) were calculated as the mean of the regional strains across the entire LV for both modalities. Pearson correlation coefficients and Bland-Altman analyses were used for comparisons. Intraclass correlation coefficients (ICC) were used to assess the inter- and intraobserver reproducibility of the 4DCT-derived strains. RESULTS: The 4DCT-derived regional strains correlated well with the CMR-derived regional strains ( ε c c ${\epsilon }_{cc}$ : r = 0.76, p < 0.001; ε l l ${\epsilon }_{ll}$ : r = 0.64, p < 0.001). A very strong correlation was found between 4DCT-derived GCS and 4DCT-derived EF (r = -0.96; p < 0.001). The 4DCT-derived strains were also highly reproducible, with very low inter- and intraobserver variability (intraclass correlation coefficients in the range of [0.92, 0.99]). CONCLUSIONS: We have developed a novel method to estimate high-resolution regional LV endocardial circumferential and longitudinal strains from 4DCT images. Except for the definition of the mitral valve and LV outflow tract planes, the method is completely user independent, thus yielding highly reproducible estimates of endocardial strain. The 4DCT-derived strains correlated well with those estimated using a commercial CMR feature tracking software. The promising results reported in this study highlight the potential utility of 4DCT in the precise assessment of regional cardiac function for the management of cardiac disease.


Subject(s)
Magnetic Resonance Imaging, Cine , Ventricular Function, Left , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Spectroscopy , Reproducibility of Results
2.
J Cereb Blood Flow Metab ; 41(7): 1692-1706, 2021 07.
Article in English | MEDLINE | ID: mdl-34152893

ABSTRACT

Stroke affects primarily aged and co-morbid people, aspects not properly considered to date. Since angiogenesis/vasculogenesis are key processes for stroke recovery, we purposed to determine how different co-morbidities affect the outcome and angiogenesis/vasculogenesis, using a rodent model of metabolic syndrome, and by dynamic enhanced-contrast imaging (DCE-MRI) to assess its non-invasive potential to determine these processes. Twenty/twenty-two month-old corpulent (JCR:LA-Cp/Cp), a model of metabolic syndrome and lean rats were used. After inducing the experimental ischemia by transient MCAO, angiogenesis was analyzed by histology, vasculogenesis by determination of endothelial progenitor cells in peripheral blood by flow cytometry and evaluating their pro-angiogenic properties in culture and the vascular function by DCE-MRI at 3, 7 and 28 days after tMCAO. Our results show an increased infarct volume, BBB damage and an impaired outcome in corpulent rats compared with their lean counterparts. Corpulent rats also displayed worse post-stroke angiogenesis/vasculogenesis, outcome that translated in an impaired vascular function determined by DCE-MRI. These data confirm that outcome and angiogenesis/vasculogenesis induced by stroke in old rats are negatively affected by the co-morbidities present in the corpulent genotype and also that DCE-MRI might be a technique useful for the non-invasive evaluation of vascular function and angiogenesis processes.


Subject(s)
Contrast Media , Infarction, Middle Cerebral Artery/complications , Magnetic Resonance Imaging/methods , Metabolic Syndrome/physiopathology , Neovascularization, Pathologic/pathology , Stroke/complications , Vascular Diseases/pathology , Animals , Disease Models, Animal , Male , Neovascularization, Pathologic/etiology , Rats , Vascular Diseases/etiology
4.
Med Image Anal ; 65: 101748, 2020 10.
Article in English | MEDLINE | ID: mdl-32711368

ABSTRACT

The location of the mitral and aortic valves in dynamic cardiac imaging is useful for extracting functional derived parameters such as ejection fraction, valve excursions, and global longitudinal strain, and when performing anatomical structures tracking using slice following or valve intervention's planning. Completely automatic segmentation methods are still challenging tasks because of their fast movements and the different positions that prevent good visibility of the leaflets along the full cardiac cycle. In this article, we propose a processing pipeline to track the displacement of the aortic and mitral valve annuli from high-resolution cardiac four-dimensional computed tomographic angiography (4D-CTA). The proposed method is based on the dynamic separation of left ventricle, left atrium and aorta using statistical shape modeling and an energy minimization algorithm based on graph-cuts and has been evaluated on a set of 15 electrocardiography-gated 4D-CTAs. We report a mean agreement distance between manual annotations and our proposed method of 2.52±1.06 mm for the mitral annulus and 2.00±0.69 mm for the aortic valve annulus based on valve locations detected from manual anatomical landmarks. In addition, we show the effect of detecting the valvular planes on derived functional parameters (ejection fraction, global longitudinal strain, and excursions of the mitral and aortic valves).


Subject(s)
Aortic Valve , Mitral Valve , Angiography , Aorta , Aortic Valve/diagnostic imaging , Humans , Mitral Valve/diagnostic imaging , Tomography, X-Ray Computed
5.
Cardiovasc Res ; 107(1): 45-55, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25691537

ABSTRACT

AIMS: The physiological determinants of RV diastolic function remain poorly understood. We aimed to quantify the contribution of elastic recoil to RV filling and determine its sensitivity to interventricular interaction. METHODS AND RESULTS: High-fidelity pressure-volume loops and simultaneous 3-dimensional ultrasound sequences were obtained in 13 pigs undergoing inotropic modulation, volume overload, and acute pressure overload induced by endotoxin infusion. Using a validated method, we isolated elastic restoring forces from ongoing relaxation using conventional pressure-volume data. The RV contracted below the equilibrium volume in >75% of the data sets. Consequently, elastic recoil generated strong sub-atmospheric passive pressure at the onset of diastole [-3 (-4 to -2) mmHg at baseline]. Stronger restoring suction pressure was related to a shorter isovolumic relaxation period, a higher rapid filling fraction, and lower atrial pressures (all P < 0.05). Restoring forces were mostly determined by the position of operating volumes around the equilibrium volume. By this mechanism, the negative inotropic effect of beta-blockade reduced and sometimes abolished restoring forces. During acute pressure overload, restoring forces initially decreased, but recovered at advanced stages. This biphasic response was related to alterations of septal curvature induced by changes in the diastolic LV-RV pressure balance. The constant of elastic recoil was closely related to the constant of passive stiffness (R = 0.69). CONCLUSION: The RV works as a suction pump, exploiting contraction energy to facilitate filling by means of strong elastic recoil. Restoring forces are influenced by the inotropic state and RV conformational changes mediated by direct ventricular interdependence.


Subject(s)
Myocardial Contraction , Ventricular Function, Right , Animals , Diastole/physiology , Elasticity , Swine , Swine, Miniature
6.
MAGMA ; 28(2): 119-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24916487

ABSTRACT

OBJECTIVE: We sought to evaluate the effects of acute hyperglycemia induced by intraperitoneal injection of glucose (2.7 g/kg) on vascular delivery to GL261 mouse gliomas kept at moderate hypothermia (~30 °C). MATERIALS AND METHODS: Seven GL261 glioma-bearing mice were studied by T1-weighted DCE MRI before and after an injection of glucose (n = 4) or saline (n = 3). Maximum relative contrast enhancement (RCE) and initial area under the enhancement curve (IAUC) were determined in each pixel. RESULTS: The mean tumor parameter values showed no significant changes after injecting either saline (RCE -5.9 ± 5.0 %; IAUC -3.7 ± 3.6 %) or glucose (RCE -1.6 ± 9.0 %; IAUC +0.6 ± 6.4 %). Pixel-by-pixel analysis revealed small post-injection changes in RCE and IAUC between the glucose and saline groups, all within 13 % range of their baseline values. CONCLUSION: Perturbing the metabolism of GL261 tumors kept at moderate hypothermia with hyperglycemia did not induce significant changes in the permeability/perfusion of these tumors. This is relevant for future studies with this model since regional differences in glucose accumulation could thus reflect basal heterogeneities in vasculature and/or metabolism of GL261 tumors.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/therapy , Diffusion Magnetic Resonance Imaging/methods , Hyperglycemia/pathology , Hypothermia, Induced/methods , Acute Disease , Animals , Brain Neoplasms/complications , Cell Line, Tumor , Female , Glioma , Hyperglycemia/complications , Mice , Mice, Inbred C57BL , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome , Tumor Burden
7.
BMC Bioinformatics ; 14: 316, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24180558

ABSTRACT

BACKGROUND: DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. RESULTS: Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. CONCLUSIONS: A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/.


Subject(s)
Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods , Software , Algorithms , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Computer Simulation , Disease Models, Animal , Least-Squares Analysis , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...