Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int Rev Neurobiol ; 172: 103-143, 2023.
Article in English | MEDLINE | ID: mdl-37833010

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the subsequent motor disability. The most frequently used treatments in clinics, such as L-DOPA, restore dopaminergic neurotransmission in the brain. However, these treatments are only symptomatic, have temporary efficacy, and produce side effects. Part of the side effects are related to the route of administration as the consumption of oral tablets leads to unspecific pulsatile activation of dopaminergic receptors. For this reason, it is necessary to not only find alternative treatments, but also to develop new administration systems with better security profiles. Nanoparticle delivery systems are new administration forms designed to reach the pharmacological target in a highly specific way, leading to better drug bioavailability, efficacy and safety. Some of these delivery systems have shown promising results in animal models of PD not only when dopaminergic drugs are administered, but even more when neurotrophic factors are released. These latter compounds promote maturation and survival of dopaminergic neurons and can be exogenously administered in the form of pharmacological therapy or endogenously generated by non-pharmacological methods. In this sense, experimental exposure to enriched environments, a non-invasive strategy based on the combination of social and inanimate stimuli, enhances the production of neurotrophic factors and produces a neuroprotective effect in parkinsonian animals. In this review, we will discuss new nanodelivery systems in PD with a special focus on therapies that increase the release of neurotrophic factors.


Subject(s)
Disabled Persons , Motor Disorders , Parkinson Disease , Animals , Humans , Parkinson Disease/drug therapy , Levodopa/therapeutic use , Nerve Growth Factors/therapeutic use
2.
Exp Biol Med (Maywood) ; 248(7): 553-560, 2023 04.
Article in English | MEDLINE | ID: mdl-37309729

ABSTRACT

The structure and functions of the central nervous system are influenced by environmental stimuli, which also play an important role in brain diseases. Enriched environment (EE) consists of producing modifications in the environment of standard laboratory animals to induce an improvement in their biological conditions. This paradigm promotes transcriptional and translational effects that result in ameliorated motor, sensory, and cognitive stimulation. EE has been shown to enhance experience-dependent cellular plasticity and cognitive performance in animals housed under these conditions compared with animals housed under standard conditions. In addition, several studies claim that EE induces nerve repair by restoring functional activities through morphological, cellular, and molecular adaptations in the brain that have clinical relevance in neurological and psychiatric disorders. In fact, the effects of EE have been studied in different animal models of psychiatric and neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, ischemic brain injury, or traumatic brain injury, delaying the onset and progression of a wide variety of symptoms of these disorders. In this review, we analyze the action of EE focused on diseases of the central nervous system and the translation to humans to develop a bridge to its application.


Subject(s)
Brain , Environment , Animals , Humans , Disease Models, Animal
3.
Sci Data ; 8(1): 240, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526510

ABSTRACT

The development of new effective and safer therapies for osteoporosis, in addition to improved diagnostic and prevention strategies, represents a serious need in the scientific community. Micro-CT image-based analyses in association with biomechanical testing have become pivotal tools in identifying osteoporosis in animal models by assessment of bone microarchitecture and resistance, as well as bone strength. Here, we describe a dataset of micro-CT scans and reconstructions of 15 whole femurs and biomechanical tests on contralateral femurs from C57BL/6JOlaHsd ovariectomized (OVX), resembling human post-menopausal osteoporosis, and sham operated (sham) female mice. Data provided for each mouse include: the acquisition images (.tiff), the reconstructed images (.bmp) and an.xls file containing the maximum attenuations for each reconstructed image. Biomechanical data include an.xls file with the recorded load-displacement, a movie with the filmed test and an.xls file collecting all biomechanical results.


Subject(s)
Femur/diagnostic imaging , Osteoporosis , X-Ray Microtomography , Animals , Biomechanical Phenomena , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Osteoporosis/diagnostic imaging , Osteoporosis/physiopathology , Ovariectomy
4.
Mol Neurobiol ; 57(1): 125-134, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31506899

ABSTRACT

Dysregulation of the inhibitory drive has been proposed to be a central mechanism to explain symptoms and pathophysiological hallmarks in schizophrenia. A number of recent neuroanatomical studies suggest that certain types of inhibitory cells are deficient in schizophrenia, including somatostatin-immunoreactive interneurons (SST+). The present study sought to use stereological methods to investigate whether the number of SST+ interneurons decreased after repeated injections of NMDA receptor antagonist MK-801 (0.5 mg/kg) and to determine the effect of limited exposure to an enriched environment (EE) in adult life on this sub-population of inhibitory cells. Considering that somatostatin expression is highly dependent on neurotrophic support, we explored the changes in the relative expression of proteins related to brain-derived neurotrophic factor-tyrosine kinase B (BDNF-TrkB) signaling between the experimental groups. We observed that early-life MK-801 treatment significantly decreased the number of SST+ interneurons in the medial prefrontal cortex (mPFC) and the hippocampus (HPC) of adult Long Evans rats. Contrarily, short-term exposure to EE increased the number of SST+ interneurons in MK-801-injected animals, except in the CA1 region of the hippocampus, whereas this increase was not observed in vehicle-injected rats. We also found upregulated BDNF-TrkB signaling after EE that triggered an increase in the pERK/ERK ratio in mPFC and HPC, and the pAkt/Akt ratio in HPC. Thus, the present results support the notion that SST+ interneurons are markedly affected after early-life NMDAR blockade and that EE promotes SST+ interneuron expression, which is partly mediated through the BDNF-TrkB signaling pathway. These results may have important implications for schizophrenia, as SST+ interneuron loss is also observed in the MK-801 pre-clinical model, and its expression can be rescued by non-pharmacological approaches.


Subject(s)
Dizocilpine Maleate/pharmacology , Hippocampus/drug effects , Prefrontal Cortex/drug effects , Somatostatin/pharmacology , Animals , Hippocampus/metabolism , Interneurons/drug effects , Prefrontal Cortex/metabolism , Rats, Long-Evans , Schizophrenia/chemically induced , Schizophrenia/metabolism , Signal Transduction/drug effects
5.
Mol Neurobiol ; 55(1): 42, 2018 01.
Article in English | MEDLINE | ID: mdl-28963705

ABSTRACT

The original version of this article unfortunately contained a mistake. The name of author was changed from "Pascual Gargiulo" to "Pascual Ángel Gargiulo.

6.
Mol Neurobiol ; 55(1): 43-59, 2018 01.
Article in English | MEDLINE | ID: mdl-28842826

ABSTRACT

Exposure to an enriched environment (EE) has neuroprotective benefits and improves recovery from brain injury due to, among other, increased neurotrophic factor expression. Through these neurotrophins, important cortical and hippocampal changes occur. Vandetanib acts as a tyrosine kinase inhibitor of cell receptors, among others, the vascular endothelial growth factor receptor (VEGFR). Our aim was to investigate the effectiveness of EE counteracting cognitive and cellular effects after tyrosine kinase receptor blockade. Animals were reared under standard laboratory condition or EE; both groups received vandetanib or vehicle. Visuospatial learning was tested with Morris water maze. Neuronal, interneuronal, and vascular densities were measured by inmunohistochemistry and histochemistry techniques. Quantifications were performed in the hippocampus and in the visual cortex. Brain-derived neurotrophic factor (BDNF), tyrosine kinase B receptor (TrkB), Akt, and Erk were measured by Western blot technique. Vandetanib produces a significant decrease in vascular and neuronal densities and reduction in the expression of molecules involved in survival and proliferation processes such as phospho-Akt/Akt and phospho-Erk/Erk. These results correlated to a cognitive impairment in visuospatial test. On the other hand, animals reared in an EE are able to reverse the negative effects, activating PI3K-AKT and MAP kinase pathways mediated by BDNF-TrkB binding. Present results provide novel and consistent evidences about the usefulness of living in EE as a strategy to improve deleterious effects of blocking neurotrophic pathways by vandetanib and the notable role of the BDNF-TrkB pathway to balance the neurovascular unit and cognitive effects.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Environment , Protein Kinase Inhibitors/toxicity , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/metabolism , Signal Transduction/physiology , Animals , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Long-Evans , Signal Transduction/drug effects
7.
Mol Neurobiol ; 55(1): 26-41, 2018 01.
Article in English | MEDLINE | ID: mdl-28822057

ABSTRACT

Perinatal injections of N-methyl-D-aspartate (NMDA) receptor antagonist in rodents emulate some cognitive impairments and neurochemical alterations, such as decreased GABAergic (gamma aminobutyric acid) interneuron immunoreactivity, also found in schizophrenia. These features are pervasive, and developing neuroprotective or neurorestorative strategies is of special interest. In this work, we aimed to investigate if a short exposure to enriched environment (EE) in early adulthood (P55-P73) was an effective strategy to improve cognitive dysfunction and to restore interneuron expression in medial prefrontal cortex (mPFC) and hippocampus (HPC). For that purpose, we administered MK-801 intraperitoneally to Long Evans rats from postnatal days 10 to 20. Twenty-four hours after the last injection, MK-801 produced a transient decrease in spontaneous motor activity and exploration, but those abnormalities were absent at P24 and P55. The open field test on P73 manifested that EE reduced anxiety-like behavior. In addition, MK-801-treated rats showed cognitive impairment in novel object recognition test that was reversed by EE. We quantified different interneuron populations based on their calcium-binding protein expression (parvalbumin, calretinin, and calbindin), glutamic acid decarboxylase 67, and neuronal nuclei-positive cells by means of unbiased stereology and found that EE enhanced interneuron immunoreactivity up to normal values in MK-801-treated rats. Our results demonstrate that a timely intervention with EE is a powerful tool to reverse long-lasting changes in cognition and neurochemical markers of interneurons in an animal model of schizophrenia.


Subject(s)
Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Dizocilpine Maleate/toxicity , Environment , GABAergic Neurons/metabolism , Interneurons/metabolism , Age Factors , Animals , Animals, Newborn , Excitatory Amino Acid Antagonists/toxicity , Female , GABAergic Neurons/drug effects , GABAergic Neurons/pathology , Interneurons/drug effects , Interneurons/pathology , Male , Rats , Rats, Long-Evans , Time Factors
8.
Front Cell Neurosci ; 7: 170, 2013.
Article in English | MEDLINE | ID: mdl-24109431

ABSTRACT

Elimination of sensory inputs (deprivation) modifies the properties of the sensory cortex and serves as a model for studying plasticity during postnatal development. Many studies on the effects of deprivation have been performed in the visual cortex using dark-rearing as a visual deprivation model. It induces changes in all cellular and molecular components, including astrocytes, which play an important role in the development, maintenance, and plasticity of the cortex, mediated by cytokines which have been termed angioglioneurins. When one sense is deprived, a compensatory mechanism called cross-modal plasticity increases performance in the remaining senses. Environmental enrichment is so far the best-known method to compensate sensorial deprivation. The aim of this work is to study the effects of exercise alone, and of an enriched environment combined with exercise, on astroglial population in order to observe the effects of exercise by itself, or the potential synergistic effect during the rat visual system development. Pregnant Sprague-Dawley rats were raised in one of the following rearing conditions: in total darkness and enriched environment conditions with physical exercise, and in total darkness with voluntary physical exercise. Astrocytic density was estimated by immunohistochemistry for S-100ß protein and quantifications were performed in layer IV. The somatosensorial cortex barrel field was also studied as control. Our main result shows that an enriched environment combined with voluntary physical exercise manages to reverse the negative effects induced by darkness over the astroglial population of both the visual and the somatosensory cortices. On the other hand, exercise alone only produces effects upon the astroglial population of the somatosensory cortex, and less so when combined with an enriched environment.

9.
J Signal Transduct ; 2012: 597915, 2012.
Article in English | MEDLINE | ID: mdl-22852079

ABSTRACT

The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called "glioma stem cells" induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies.

10.
Neural Plast ; 2012: 305693, 2012.
Article in English | MEDLINE | ID: mdl-22848849

ABSTRACT

During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.


Subject(s)
Brain/growth & development , Brain/physiology , Neural Pathways/physiology , Sensation/physiology , Sensory Deprivation/physiology , Animals , Brain/anatomy & histology , Cerebral Cortex/growth & development , Cerebral Cortex/physiology , Environment , Humans , Neuronal Plasticity/physiology , Rats , Visual Pathways/anatomy & histology , Visual Pathways/growth & development
11.
Int Rev Neurobiol ; 102: 317-46, 2012.
Article in English | MEDLINE | ID: mdl-22748835

ABSTRACT

Angioneurines are a family of molecules that include vascular growth factors such as VEGF, neurotrophins such as BDNF, IGF-I, and Erythropoietin, among others. They affect both neural and vascular processes. Due to the fact that all of them act over glia, we propose the term angioglioneurins to name them. They play a key role in the neurogliovascular unit that represents the functional core maintaining BBB. Although delivery to CNS is still an unsolved problem nowadays, exogenous angioglioneurin administration represents a promising therapeutic strategy for many neurological pathologies due to their neurotrophic and neurogenic role. In brains, VEGF is produced by neurons and astrocytes in different stages and situation, binding to tyrosine kinase receptors and also to neuropilin family. This fact reinforces its key role in the cross talk between neural and vascular development and activity. Angioglioneurins described in this report might become an important therapeutic resource in CNS restoration, especially in pathologies as stroke or traumatic brain injury.


Subject(s)
Brain Diseases/drug therapy , Brain/growth & development , Nerve Growth Factors/physiology , Vascular Endothelial Growth Factor A/physiology , Animals , Astrocytes/metabolism , Blood-Brain Barrier/physiology , Brain/blood supply , Brain/drug effects , Brain Diseases/physiopathology , Disease Models, Animal , Humans , Nerve Growth Factors/pharmacology , Nerve Growth Factors/therapeutic use , Neuroglia/physiology , Neurons/physiology , Neuroprotective Agents/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/therapeutic use
12.
Brain Res ; 1473: 141-54, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22824331

ABSTRACT

VEGF is the major angiogenic and vascular permeability factor in health and disease. Vascular development depends on function, and in sensory areas is experience-dependent. Our aim was to investigate, qualitatively and quantitatively, the effects of intracortical infusion and neutralisation of VEGF during the first days of the critical visual period, when peak levels of endogenous VEGF secretion are reached. VEGF was intracortically delivered into middle cortical layers of P18 Long-Evans rats. Another cohort received anti-VEGF. Vehicle (PBS)-infused and non-operated animals were used as controls. Various immunopathological analyses were performed: Endothelial Barrier Antigen (EBA) for the BBB integrity and GFAP for astroglial response. Vascular density was measured by Butyryl Cholinesterase Histochemistry, neuronal density by NeuN immunohistochemistry and apoptosis by TUNEL staining. VEGF levels were measured by Western Blot. Decreased vascular permeability was evoked in VEGF-infused rats whilst EBA expression remained constant, suggesting a preserved BBB function. When VEGF was blocked, tissue showed a higher degree of extravasation and a decreased number of EBA-positive vessels surrounding the injury. Lesion induced by cannula implantation annulled the normal increase in vascular density and the decrease in neuronal density during this time. VEGF rescued in part the vascular increase, and also prevented physiological and pathological neuronal death. VEGF blockade induced a higher amount of neural loss and lower astrocytic reaction. Our results support the role of VEGF as extending beyond vascularization, preventing physiological and pathological neuronal death, not only in the injured hemisphere but also in the intact one suggesting a process of transhemispheric diaschisis.


Subject(s)
Critical Period, Psychological , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Visual Cortex , Animals , Apoptosis/drug effects , Apoptosis/physiology , Blotting, Western , Immunohistochemistry , In Situ Nick-End Labeling , Injections, Intraventricular , Microscopy, Confocal , Neovascularization, Physiologic/physiology , Rats , Rats, Long-Evans , Visual Cortex/drug effects , Visual Cortex/growth & development , Visual Cortex/metabolism , Visual Cortex/pathology
13.
Curr Neurovasc Res ; 9(1): 72-81, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22272767

ABSTRACT

Brain postnatal development is modulated by adaptation and experience. Experience-mediated changes increase neuronal activity leading to increased metabolic demands that involve adaptive changes including ones at the microvascular network. Therefore, vascular environment plays a key role in central nervous system (CNS) development and function in health and disease. Trophic factors are crucial in CNS development and cell survival in adults. They participate in protection and proliferation of neuronal, glial and endothelial cells. Among the most important molecules are: the proangiogenic vascular endothelial growth factor (VEGF), the neurotrophin brain derived neurotrophic factor (BDNF), insulin growth factor (IGF-I) and the glycoprotein erythropoietin (EPO). We propose the term angioglioneurins to define molecules acting on the three components of the neurogliovascular unit. We have previously reported the effects of environmental modifications on the three components of the neurogliovascular unit during the postnatal development. We have also described the main role played by VEGF in the experience-induced postnatal changes. Angioglioneurin administration, alone or in combination with other neuroprotective strategies such as environmental enrichment, has been proposed as a non-invasive therapeutic strategy against several CNS diseases.


Subject(s)
Brain/blood supply , Brain/metabolism , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Capillaries/cytology , Capillaries/metabolism , Humans , Neurons/cytology , Neurons/metabolism
14.
Rev Neurol ; 52(12): 743-50, 2011 Jun 16.
Article in Spanish | MEDLINE | ID: mdl-21594859

ABSTRACT

INTRODUCTION: A subpopulation of neoplastic cells with characteristics of stem cells has been described on human multiform glioblastomas. These cells play a pivotal role in tumour angiogenesis and malignancy being involved in infiltration of adjacent normal parenchyma. The named glial stem cells could be responsible for recurrences after surgery. This is due to their survival capacity after quimio/radiotherapy treatments. DEVELOPMENT: In this work we review the role of glial stem cells in relationship with angiogenesis process. We also review some findings related to the appearance of these cells during angiogenesis in a rat endogenous experimental model of gliomas. These cells were characterized by antibodies against the antigens CD133, nestin and the vascular endothelial growth factor (VEGF). Nestin+ cells were found in every stage of tumour development, whereas CD133+ cells were only present since intermediates stages corresponding with VEGF overexpression. This moment is known as start of angiogenesis or 'angiogenic switch'. We also found that some nestin+ cells co-expressed CD133 antigen. Glial stem cells are distributed in the experimental glioma model as well as in human multiform glioblastomas, shaping niches into perivascular or intra-tumoral hypoxic areas. CONCLUSION: Many evidences corroborate the hypothesis that glial stem cells have a close relationship with angiogenic switch, intratumor hypoxia and neoplastic microvascular network.


Subject(s)
Neovascularization, Pathologic , Neuroglia/physiology , Stem Cells/physiology , AC133 Antigen , Animals , Antigens, CD/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Glycoproteins/metabolism , Humans , Intermediate Filament Proteins/metabolism , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/physiology , Nerve Tissue Proteins/metabolism , Nestin , Neuroglia/cytology , Peptides/metabolism , Stem Cells/cytology , Vascular Endothelial Growth Factor A/metabolism
15.
J Neural Transm (Vienna) ; 118(1): 135-44, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20931243

ABSTRACT

Postnatal development of the visual cortex is modulated by experience, especially during the critical period. In rats, a stable neuronal population is only acquired after this relatively prolonged period. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor and also has strong neuroprotective, neurotrophic and neurogenic properties. Similar effects have been described for rearing in enriched environments. Our aim is to investigate the vascular and neuronal effects of combining VEGF infusion and environmental enrichment on the visual cortex during the initial days of the critical period. Results showed that a small percentage of Cleaved Caspase-3 positive cells colocalized with neuronal markers. The lesion produced by the cannula implantation resulted in decreased vascular, neuronal and Caspase-3 positive cell densities. Rearing under enriched environment was unable to reverse these effects in any group, whereas VEGF infusion alone partially corrected those effects. A higher effectiveness was reached by combining both the procedures, the most effective combination being when enriched-environment rearing was introduced only after minipump implantation. In addition to the angiogenic effect of VEGF, applied strategies also had synergic neuroprotective effects, and the combination of the two strategies had more remarkable effects than those achieved by each strategy applied individually.


Subject(s)
Brain/physiology , Environment , Neuroprotective Agents , Vascular Endothelial Growth Factor A/pharmacology , Visual Cortex/growth & development , Animals , Brain/drug effects , Butyrylcholinesterase/metabolism , Capillaries/metabolism , Caspase 3/metabolism , Cell Count , Drug Implants , Fluorescent Antibody Technique, Indirect , Immunohistochemistry , Nerve Tissue Proteins/metabolism , Rats , Rats, Long-Evans , Tissue Fixation , Vascular Endothelial Growth Factor A/administration & dosage , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...