Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(21): 14546-14557, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748181

ABSTRACT

An efficient design of crystalline solid-state proton conductors (SSPCs) is crucial for the progress of clean energy applications. Developing such materials to make them work at room temperature with a conductivity of ≥10-1 S cm-1 is of significant interest in terms of technical and commercial aspects. Utilizing the recently highlighted "coordinated-water-driven proton conduction" approach, herein, we have rationally synthesized two highly stable and scalable 1D Co(II) coordination polymers (CPs) as SSPCs, PCM-2 {[Co(bpy)(H2O)2(NO3)2]·H2O}n and PCM-3 {[Co2(bpy)2(SO4)2(H2O)6].4H2O}n, with distinct alignments in coordinated water and coordinated oxo-anions (nitrate and sulfate, respectively). The acidity of the metal-bound water molecules in PCM-2 is further enhanced through cooperative long-range continuous H bonds with coordinated Brønsted basic nitrates (proton acceptors), leading to ultrahigh superprotonic conductivities even at 25 °C (1.03 × 10-1 S cm-1 under 95% RH), and reached a maximum of 2.99 × 10-1 S cm-1 at 85 °C (95% RH). The conductivity at 25 °C is even higher than that of commercial Nafion 117 (6.74 × 10-2 S cm-1 at 100% RH). The absence of such an H-bonding interaction in PCM-3 (closed loops) resulted in a lesser conductivity of 5.87 × 10-5 S cm-1 (95% RH, 85 °C). PCM-2 represents the first example of SSPC exhibiting conductivity in the order 10-1 S cm-1 at ambient temperature (25 °C) with excellent recyclability.

2.
J Phys Chem A ; 123(1): 163-170, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30509064

ABSTRACT

A comparative study of 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) and its 2-methyl-substituted analogue (2-Me-DMPO) has revealed their contrasting reaction pathways of oxaziridine and lactam (pyrrolidone) formation. The initial photoexcitation populates the second excited singlet states (S2) in both the systems with S0-S2 transition moment value of 3 D (oscillator strength 0.4); this subsequently undergoes (S0/S1) conical intersection through a structure having a CNO-kink and situated around 35-40 kcal/mol below the vertically excited geometry of the first excited singlet state (S1). This conical intersection is found to be responsible for the formation of the oxaziridine photoproduct in these systems. In DMPO, this oxaziridine eventually forms the corresponding lactam compound through a [1,2]-H shift after overcoming a barrier of 35 kcal/mol and following the imaginary frequency of 1517 i cm-1. The reverse thermal process of parent nitrone formation proceeds through a transition state situated at 60 kcal/mol above the oxaziridine geometry, and the corresponding imaginary frequency is 1514 i cm-1. On the other hand, in 2-Me-DMPO, the oxaziridine formed is more stable, and lactam formation does not happen from it in a similar manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...