Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
J Appl Crystallogr ; 57(Pt 3): 649-658, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846772

ABSTRACT

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Šdata, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.

2.
IUCrJ ; 11(Pt 2): 237-248, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38446456

ABSTRACT

Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.


Subject(s)
Arabidopsis , Microfluidics , Crystallography , Cognition , Convection
3.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38489389

ABSTRACT

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Subject(s)
Ferric Compounds , Prochlorococcus , Ferric Compounds/chemistry , Iron-Binding Proteins/metabolism , Prochlorococcus/metabolism , Iron/metabolism , Oxidation-Reduction , Transferrin/metabolism , Water/chemistry , Ferrous Compounds/chemistry , Crystallography, X-Ray
4.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37939223

ABSTRACT

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Subject(s)
Peracetic Acid , Peroxides , Ligands , Cytochrome P-450 Enzyme System/metabolism , Iron , Heme/chemistry , Tyrosine , Carbon
5.
J Appl Crystallogr ; 56(Pt 5): 1361-1370, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37791355

ABSTRACT

Serial crystallography has emerged as an important tool for structural studies of integral membrane proteins. The ability to collect data from micrometre-sized weakly diffracting crystals at room temperature with minimal radiation damage has opened many new opportunities in time-resolved studies and drug discovery. However, the production of integral membrane protein microcrystals in lipidic cubic phase at the desired crystal density and quantity is challenging. This paper introduces VIALS (versatile approach to high-density microcrystals in lipidic cubic phase for serial crystallography), a simple, fast and efficient method for preparing hundreds of microlitres of high-density microcrystals suitable for serial X-ray diffraction experiments at both synchrotron and free-electron laser sources. The method is also of great benefit for rational structure-based drug design as it facilitates in situ crystal soaking and rapid determination of many co-crystal structures. Using the VIALS approach, room-temperature structures are reported of (i) the archaerhodopsin-3 protein in its dark-adapted state and 110 ns photocycle intermediate, determined to 2.2 and 1.7 Å, respectively, and (ii) the human A2A adenosine receptor in complex with two different ligands determined to a resolution of 3.5 Å.

6.
Science ; 382(6666): 109-113, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797025

ABSTRACT

Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.


Subject(s)
Bacterial Proteins , Entomoplasmataceae , Ribonucleotide Reductases , Electron Transport , Protons , Ribonucleotide Reductases/chemistry , Crystallography, X-Ray/methods , Entomoplasmataceae/enzymology , Catalytic Domain , Bacterial Proteins/chemistry
7.
J Biol Chem ; 299(11): 105331, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37820867

ABSTRACT

The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.


Subject(s)
Copper , Escherichia coli , Binding Sites , Copper/metabolism , Escherichia coli/metabolism , Ions/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Silver/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
8.
Elife ; 112022 09 09.
Article in English | MEDLINE | ID: mdl-36083619

ABSTRACT

Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b-NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b-NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b-NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.


Subject(s)
Ribonucleotide Reductases , Crystallography, X-Ray , Flavins/metabolism , Oxidation-Reduction , Ribonucleotide Reductases/chemistry , Superoxides
9.
ChemMedChem ; 17(9): e202200016, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35085423

ABSTRACT

The two SARS-CoV-2 proteases, i. e. the main protease (Mpro ) and the papain-like protease (PLpro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro . Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro , highlighting the potential for dual PLpro /Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus Papain-Like Proteases , Humans , Lactams , Leucine , Mass Spectrometry , Nitriles , Peptide Hydrolases , Proline , Protease Inhibitors/pharmacology
10.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: mdl-34417180

ABSTRACT

Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.


Subject(s)
Electrons , Oxidoreductases , Catalysis , Catalytic Domain , Crystallography, X-Ray , Ferric Compounds , Humans , Lasers , Oxidoreductases/chemistry , Oxygen/chemistry , Penicillins/chemistry , Penicillins/metabolism , Substrate Specificity
11.
Nat Commun ; 12(1): 4461, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294694

ABSTRACT

Serial femtosecond crystallography has opened up many new opportunities in structural biology. In recent years, several approaches employing light-inducible systems have emerged to enable time-resolved experiments that reveal protein dynamics at high atomic and temporal resolutions. However, very few enzymes are light-dependent, whereas macromolecules requiring ligand diffusion into an active site are ubiquitous. In this work we present a drop-on-drop sample delivery system that enables the study of enzyme-catalyzed reactions in microcrystal slurries. The system delivers ligand solutions in bursts of multiple picoliter-sized drops on top of a larger crystal-containing drop inducing turbulent mixing and transports the mixture to the X-ray interaction region with temporal resolution. We demonstrate mixing using fluorescent dyes, numerical simulations and time-resolved serial femtosecond crystallography, which show rapid ligand diffusion through microdroplets. The drop-on-drop method has the potential to be widely applicable to serial crystallography studies, particularly of enzyme reactions with small molecule substrates.


Subject(s)
Crystallography, X-Ray/methods , Enzymes/chemistry , Enzymes/metabolism , Animals , Avian Proteins/chemistry , Avian Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Chickens , Crystallography, X-Ray/instrumentation , Equipment Design , Models, Molecular , Muramidase/chemistry , Muramidase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , beta-Lactamases/chemistry , beta-Lactamases/metabolism
12.
Int J Mol Sci ; 22(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066955

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) are ubiquitous among animals and play pivotal functions in insect immunity. Non-catalytic PGRPs are involved in the activation of immune pathways by binding to the peptidoglycan (PGN), whereas amidase PGRPs are capable of cleaving the PGN into non-immunogenic compounds. Drosophila PGRP-LB belongs to the amidase PGRPs and downregulates the immune deficiency (IMD) pathway by cleaving meso-2,6-diaminopimelic (meso-DAP or DAP)-type PGN. While the recognition process is well analyzed for the non-catalytic PGRPs, little is known about the enzymatic mechanism for the amidase PGRPs, despite their essential function in immune homeostasis. Here, we analyzed the specific activity of different isoforms of Drosophila PGRP-LB towards various PGN substrates to understand their specificity and role in Drosophila immunity. We show that these isoforms have similar activity towards the different compounds. To analyze the mechanism of the amidase activity, we performed site directed mutagenesis and solved the X-ray structures of wild-type Drosophila PGRP-LB and its mutants, with one of these structures presenting a protein complexed with the tracheal cytotoxin (TCT), a muropeptide derived from the PGN. Only the Y78F mutation abolished the PGN cleavage while other mutations reduced the activity solely. Together, our findings suggest the dynamic role of the residue Y78 in the amidase mechanism by nucleophilic attack through a water molecule to the carbonyl group of the amide function destabilized by Zn2+.


Subject(s)
Amidohydrolases/metabolism , Carrier Proteins/metabolism , Drosophila melanogaster/metabolism , Amidohydrolases/chemistry , Amino Acid Sequence , Animals , Carrier Proteins/chemistry , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptidoglycan , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Secondary , Sugars/metabolism , Virulence Factors, Bordetella , Zinc/metabolism
13.
Methods Mol Biol ; 2305: 203-228, 2021.
Article in English | MEDLINE | ID: mdl-33950392

ABSTRACT

Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.


Subject(s)
Crystallography, X-Ray/methods , Lasers , Macromolecular Substances/chemistry , Synchrotrons , X-Ray Diffraction/methods , Crystallography, X-Ray/instrumentation , Electrons , Macromolecular Substances/ultrastructure , Molecular Biology , Proteins/chemistry , Proteins/ultrastructure , X-Ray Diffraction/instrumentation
14.
Eur J Med Chem ; 215: 113257, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33618159

ABSTRACT

Penems have demonstrated potential as antibacterials and ß-lactamase inhibitors; however, their clinical use has been limited, especially in comparison with the structurally related carbapenems. Faropenem is an orally active antibiotic with a C-2 tetrahydrofuran (THF) ring, which is resistant to hydrolysis by some ß-lactamases. We report studies on the reactions of faropenem with carbapenem-hydrolysing ß-lactamases, focusing on the class A serine ß-lactamase KPC-2 and the metallo ß-lactamases (MBLs) VIM-2 (a subclass B1 MBL) and L1 (a B3 MBL). Kinetic studies show that faropenem is a substrate for all three ß-lactamases, though it is less efficiently hydrolysed by KPC-2. Crystallographic analyses on faropenem-derived complexes reveal opening of the ß-lactam ring with formation of an imine with KPC-2, VIM-2, and L1. In the cases of the KPC-2 and VIM-2 structures, the THF ring is opened to give an alkene, but with L1 the THF ring remains intact. Solution state studies, employing NMR, were performed on L1, KPC-2, VIM-2, VIM-1, NDM-1, OXA-23, OXA-10, and OXA-48. The solution results reveal, in all cases, formation of imine products in which the THF ring is opened; formation of a THF ring-closed imine product was only observed with VIM-1 and VIM-2. An enamine product with a closed THF ring was also observed in all cases, at varying levels. Combined with previous reports, the results exemplify the potential for different outcomes in the reactions of penems with MBLs and SBLs and imply further structure-activity relationship studies are worthwhile to optimise the interactions of penems with ß-lactamases. They also exemplify how crystal structures of ß-lactamase substrate/inhibitor complexes do not always reflect reaction outcomes in solution.


Subject(s)
Anti-Bacterial Agents/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , beta-Lactams/chemistry , Anti-Bacterial Agents/metabolism , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Klebsiella pneumoniae/enzymology , Protein Binding , Pseudomonas aeruginosa/enzymology , Stenotrophomonas maltophilia/enzymology , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/metabolism , beta-Lactams/metabolism
15.
Curr Opin Struct Biol ; 65: 193-208, 2020 12.
Article in English | MEDLINE | ID: mdl-33049498

ABSTRACT

Time-resolved serial femtosecond crystallography (tr-SFX) methods exploit slurries of crystalline samples that range in size from hundreds of nanometers to a few tens of micrometers, at near-physiological temperature and pressure, to generate atomic resolution models and probe authentic function with the same experiment. 'Dynamic structural biology' is often used to encompass the research philosophy and techniques. Reaction cycles for tr-SFX studies are initiated by photons or ligand addition/mixing strategies, wherein the latter are potentially generalizable across enzymology. Thus, dynamic structural biology often creates stop-motion molecular movies of macromolecular function. In metal-dependent systems, complementary spectroscopic information can also be collected from the same samples and X-ray pulses, which provides even more detailed mechanistic insights. These types of experimental data also complement quantum mechanical and classical dynamics numerical calculations. Correlated structural-functional results will yield more detailed mechanistic insights and will likely translate into better drugs and treatments impacting human health, and better catalysis for clean energy and agriculture.


Subject(s)
Biophysics/methods , Macromolecular Substances/chemistry , Proteins/chemistry , Bacteria/metabolism
16.
IUCrJ ; 7(Pt 5): 901-912, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32939282

ABSTRACT

Cryogenic X-ray diffraction is a powerful tool for crystallographic studies on enzymes including oxygenases and oxidases. Amongst the benefits that cryo-conditions (usually employing a nitro-gen cryo-stream at 100 K) enable, is data collection of di-oxy-gen-sensitive samples. Although not strictly anaerobic, at low temperatures the vitreous ice conditions severely restrict O2 diffusion into and/or through the protein crystal. Cryo-conditions limit chemical reactivity, including reactions that require significant conformational changes. By contrast, data collection at room temperature imposes fewer restrictions on diffusion and reactivity; room-temperature serial methods are thus becoming common at synchrotrons and XFELs. However, maintaining an anaerobic environment for di-oxy-gen-dependent enzymes has not been explored for serial room-temperature data collection at synchrotron light sources. This work describes a methodology that employs an adaptation of the 'sheet-on-sheet' sample mount, which is suitable for the low-dose room-temperature data collection of anaerobic samples at synchrotron light sources. The method is characterized by easy sample preparation in an anaerobic glovebox, gentle handling of crystals, low sample consumption and preservation of a localized anaerobic environment over the timescale of the experiment (<5 min). The utility of the method is highlighted by studies with three X-ray-radiation-sensitive Fe(II)-containing model enzymes: the 2-oxoglutarate-dependent l-arginine hy-droxy-lase VioC and the DNA repair enzyme AlkB, as well as the oxidase isopenicillin N synthase (IPNS), which is involved in the biosynthesis of all penicillin and cephalosporin antibiotics.

17.
Acta Crystallogr D Struct Biol ; 76(Pt 8): 790-801, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32744261

ABSTRACT

In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.


Subject(s)
Automation, Laboratory , Endopeptidase K/chemistry , Macromolecular Substances/chemistry , Muramidase/chemistry , Automation, Laboratory/instrumentation , Automation, Laboratory/methods , Crystallography, X-Ray , Synchrotrons/instrumentation
18.
J Am Chem Soc ; 142(33): 14249-14266, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32683863

ABSTRACT

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the ≤35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 Å resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.


Subject(s)
Oxygenases/chemistry , Temperature , Methylosinus trichosporium/enzymology , Models, Molecular , Oxidation-Reduction , Oxygenases/metabolism , Solubility , X-Rays
19.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32434915

ABSTRACT

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Subject(s)
Photosynthesis , Photosystem II Protein Complex/metabolism , Hydrogen/metabolism , Magnesium/metabolism , Oxidation-Reduction , Oxygen/metabolism , Photons , Photosystem II Protein Complex/chemistry , Quinones/metabolism , Water/metabolism
20.
FEBS J ; 287(13): 2797-2807, 2020 07.
Article in English | MEDLINE | ID: mdl-31808997

ABSTRACT

Cyclic guanosine 3',5'-monophosphate (cGMP) is an intracellular signalling molecule involved in many sensory and developmental processes. Synthesis of cGMP from GTP is catalysed by guanylate cyclase (GC) in a reaction analogous to cAMP formation by adenylate cyclase (AC). Although detailed structural information is available on the catalytic region of nucleotidyl cyclases (NCs) in various states, these atomic models do not provide a sufficient explanation for the substrate selectivity between GC and AC family members. Detailed structural information on the GC domain in its active conformation is largely missing, and no crystal structure of a GTP-bound wild-type GC domain has been published to date. Here, we describe the crystal structure of the catalytic domain of rhodopsin-GC (RhGC) from Catenaria anguillulae in complex with GTP at 1.7 Å resolution. Our study reveals the organization of a eukaryotic GC domain in its active conformation. We observe that the binding mode of the substrate GTP is similar to that of AC-ATP interaction, although surprisingly not all of the interactions predicted to be responsible for base recognition are present. The structure provides insights into potential mechanisms of substrate discrimination and activity regulation that may be common to all class III purine NCs. DATABASE: Structural data are available in Protein Data Bank database under the accession number 6SIR. ENZYMES: EC4.6.1.2.


Subject(s)
Blastocladiomycota/enzymology , Cyclic GMP/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Guanosine Triphosphate/metabolism , Guanylate Cyclase/chemistry , Guanylate Cyclase/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Catalytic Domain , Crystallography, X-Ray , Cyclic GMP/chemistry , Guanosine Triphosphate/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Sequence Homology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...