Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(62): 38956-38960, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492503

ABSTRACT

An efficient methodology for the synthesis of two groups of silicon-containing alkenes is reported. It includes a highly regioselective functionalization of 1,5-hexadiene through hydrosilylation and dehydrogenative silylation with organofunctional silanes and siloxanes. The established conditions enable selective monofunctionalization of 1,5-hexadiene regardless of the organosilicon modifier used as well as the type of functional group bonded to the silicon-based compound. All products were isolated and fully characterized by NMR spectroscopy and MS techniques.

2.
Dalton Trans ; 49(36): 12793-12797, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32959826

ABSTRACT

Here, we report a reaction cascade employing the substituent-induced post-assembly modification of a Co(iii) complex. Unexpectedly, we found that the (triisopropylsilyl)alkynyl moiety introduced to the Sonogashira reaction with the bromo-functionalized Co(iii) assembly plays a "Trojan horse" role, triggering a subsequent, second step of the cascade, i.e. Co(iii) to Co(ii) reduction. The reported substituent-activated Sonogashira-redox cascade reaction might set a new direction in the construction of specific chemical sensors.

3.
Inorg Chem ; 59(13): 9163-9176, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32564601

ABSTRACT

We present the results of our research on the use of microwaves as an unconventional heat source for the acceleration of iridium(III) chloro-bridged dimer preparation. The results enabled us to revise and improve known guidelines for the very quick and highly efficient synthesis of iridium(III) dimeric complexes in a very simple isolation manner. According to the developed methodology, the already known dimers containing ligands based on the 2-phenylpyridinato motif, as well as new ones stabilized with functionalized benzo[h]quinolinato and 2-phenoxypyridinato-based ligands, were efficiently synthesized. The scope of the incorporated ligands included compounds equipped with electron-donating (-Me, -OMe, -OPh, -NMe2), electron-withdrawing (-F, -Br, -CF3, -C6F5), and hole-transporting (-NPh2, -C6H4NPh2) groups. The obtained complexes were characterized by NMR, X-ray diffraction, and electrospray ionization mass spectrometry methods, and their behavior was examined in the presence of coordinating solvents such as dimethyl sulfoxide and acetonitrile. Investigation of the interactions between the above-mentioned solvents and dimers enabled us to confirm the ability of the former to cleave µ-chloride bridges, which enriches the knowledge in the field of organometallic chemistry. This knowledge can be particularly useful for the scientists working in the field of iridium-based materials, helping to avoid misinterpretation of the spectroscopic data.

4.
Materials (Basel) ; 13(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365787

ABSTRACT

Very recently, we have reported the synthesis and evaluation of biological properties of new merocyanine dyes composed of triphenylamine moiety, π-aromatic spacer, and rhodanine/2-thiohydantoin-based moiety. Interestingly, 2-thiohydantoin has never been studied before as an electron-accepting/anchoring group for the dye-sensitized solar cells (DSSCs). In the presented study, we examined the applicability of 2-thiohydantoin, an analog of rhodanine, in DSSC technology. The research included theoretical calculations, electrochemical measurements, optical characterization, and tests of the solar cells. As a result, we proved that 2-thiohydantoin might be considered as an acceptor/anchoring group since all the compounds examined in this study were active. The most efficient device showed power conversion efficiency of 2.59%, which is a promising value for molecules of such a simple structure. It was found that the cells' performances were mainly attributed to the dye loading and the ICT molecular absorption coefficients, both affected by the differences in the chemical structure of the dyes. Moreover, the effect of the aromatic spacer size and the introduction of carboxymethyl co-anchoring group on photovoltaic properties was observed and discussed.

5.
Inorg Chem ; 58(22): 15671-15686, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31697478

ABSTRACT

A series of new bis(benzo[h]quinolinato) Ir(III) complexes with modified ß-ketoiminato ancillary ligands were synthesized, and their electrochemical, photophysical properties were determined with the support of theoretical calculations. Moreover, all the synthesized heteroleptic Ir(III) complexes were examined as dopants of the host-guest type emissive layers in solution-processed phosphorescent organic light emitting diodes (PhOLEDs) of a simple structure. As expected on the basis of voltammetry measurements as well as DFT calculations, all the compounds appeared to be green emitters. Their examination showed that alteration of ß-ketoiminato ligand structure causes frontier orbitals' energy levels to be slightly changed, while significantly affecting photoluminescence and electroluminescence efficiencies of iridium phosphors containing these ligands. It was also found that modification of ancillary ligands might enhance charge trapping on the dopant, thus increasing its efficiency, especially in electroluminescence. From among the iridium complexes studied, the compound bearing 1-naphthyl group bonded to the nitrogen atom of the ancillary ligand proved to be the most efficient emitter. The PhOLED fabricated on the basis of this dopant has reached a luminance level of 16000 cd/m2, current efficiency close to 12 cd/A, and an external quantum efficiency around 3.2%.

6.
J Mol Model ; 25(6): 154, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31076932

ABSTRACT

A series of facial fac-[Ir(5-R-bzq)3] and meridional mer-[Ir(5-R-bzq)3] Ir(III) complexes bearing benzo[h]quinoline-based ligands have been studied with the help of density functional theory (DFT) methods. A detailed electronic structure comparison of the two isomers has been addressed to point out the differences in their stability and photophysical properties. An influence of substituent impact on optical and electronic properties of Ir(III) homoleptic complexes was also explored by introducing into the cyclometalated ligands substituents characterized with different electronic properties, e.g., R = H, F, OPh, NMe2, C6F5, and p-C6H4-NPh2. The results herein show that fac and mer isomers exhibit remarkable differences in stability and photophysical properties. The introduction of different functional groups into bzq ligands, despite very similar geometrical structures, significantly affected HOMO and LUMO energy levels and energy gaps of the examined Ir(III) complexes.

7.
RSC Adv ; 9(67): 39367-39380, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-35540630

ABSTRACT

Here we report studies on the synthesis of 12 new heterocyclic derivatives that differ in three structural motifs and the simultaneous evaluation of the impact of these three variables on the biological properties. The examined compounds are based on rhodanine and 2-thiohydantoin cores equipped with hydrogen or carboxymethyl substituents at the N-3 position and linked to a triphenylamine moiety through 1,4-phenylene, 1,4-naphthalenylene and 1,9-anthracenylene spacers at the C-5 position of the heterocycles. All the compounds were synthesized very quickly, selectively and in high yields according to the developed microwave-assisted Knoevenagel condensation protocol, and they were characterized thoroughly with NMR, FT-IR and ESI-HRMS techniques. The derivatives were tested for their activity against selected strains of Gram-positive and Gram-negative bacteria and yeast. Two compounds showed good activity against Gram-positive bacteria, and all of them showed low cytotoxicity against three cell lines of the human immune system. Based on membrane permeability assays it was demonstrated that the active compounds do not penetrate the cell membrane, and thus they must act on the bacterial cell surface. Finally, we proved that the evaluated structure modifications had a synergistic effect and the simultaneous presence of a 1,4-phenylene spacer and carboxymethyl group at N-3 caused the highest boost in antimicrobial activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...