Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(6): 1248-1270, 2023 03.
Article in English | MEDLINE | ID: mdl-35797346

ABSTRACT

Whole-genome surveys of genetic diversity and geographic variation often yield unexpected discoveries of novel structural variation, which long-read DNA sequencing can help clarify. Here, we report on whole-genome phylogeography of a bird exhibiting classic vicariant geographies across Australia and New Guinea, the blue-faced honeyeater (Entomyzon cyanotis), and the discovery and characterization of a novel neo-Z chromosome by long-read sequencing. Using short-read genome-wide SNPs, we inferred population divergence events within E. cyanotis across the Carpentarian and other biogeographic barriers during the Pleistocene (~0.3-1.7 Ma). Evidence for introgression between nonsister populations supports a hypothesis of reticulate evolution around a triad of dynamic barriers around Pleistocene Lake Carpentaria between Australia and New Guinea. During this phylogeographic survey, we discovered a large (134 Mbp) neo-Z chromosome and we explored its diversity, divergence and introgression landscape. We show that, as in some sylvioid passerine birds, a fusion occurred between chromosome 5 and the Z chromosome to form a neo-Z chromosome; and in E. cyanotis, the ancestral pseudoautosomal region (PAR) appears nonrecombinant between Z and W, along with most of the fused chromosome 5. The added recombination-suppressed portion of the neo-Z (~37.2 Mbp) displays reduced diversity and faster population genetic differentiation compared with the ancestral-Z. Yet, the new PAR (~17.4 Mbp) shows elevated diversity and reduced differentiation compared to autosomes, potentially resulting from introgression. In our case, long-read sequencing helped clarify the genomic landscape of population divergence on autosomes and sex chromosomes in a species where prior knowledge of genome structure was still incomplete.


Subject(s)
Arecaceae , Passeriformes , Animals , Phylogeography , Sex Chromosomes , Genomics , Passeriformes/genetics
2.
PLoS One ; 14(4): e0213943, 2019.
Article in English | MEDLINE | ID: mdl-30970028

ABSTRACT

The Burmese python (Python bivittatus) is now established as a breeding population throughout south Florida, USA. However, the extent of the invasion, and the ecological impacts of this novel apex predator on animal communities are incompletely known, in large part because Burmese pythons (hereafter "pythons") are extremely cryptic and there has been no efficient way to detect them. Pythons are recently confirmed nest predators of long-legged wading bird breeding colonies (orders Ciconiiformes and Pelecaniformes). Pythons can consume large quantities of prey and may not be recognized as predators by wading birds, therefore they could be a particular threat to colonies. To quantify python occupancy rates at tree islands where wading birds breed, we utilized environmental DNA (eDNA) analysis-a genetic tool which detects shed DNA in water samples and provides high detection probabilities. We fitted multi-scale Bayesian occupancy models to test the prediction that pythons occupy islands with wading bird colonies at higher rates compared to representative control islands containing no breeding birds. Our results suggest that pythons are widely distributed across the central Everglades in proximity to active wading bird colonies. In support of our prediction that pythons are attracted to colonies, site-level python eDNA occupancy rates were higher at wading bird colonies (ψ = 0.88, 95% credible interval [0.59-1.00]) than at the control islands (ψ = 0.42 [0.16-0.80]) in April through June (n = 15 colony-control pairs). We found our water temperature proxy (time of day) to be informative of detection probability, in accordance with other studies demonstrating an effect of temperature on eDNA degradation in occupied samples. Individual sample concentrations ranged from 0.26 to 38.29 copies/µL and we generally detected higher concentrations of python eDNA in colony sites. Continued monitoring of wading bird colonies is warranted to determine the effect pythons are having on populations and investigate putative management activities.


Subject(s)
Birds/physiology , Boidae/genetics , DNA, Environmental/isolation & purification , Ecological Parameter Monitoring/methods , Introduced Species , Animal Distribution , Animals , Florida , Nesting Behavior , Reproduction , Temperature , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...