Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33227421

ABSTRACT

P-glycoprotein (P-gp) plays a pivotal role in cellular defense, aimed at reducing xenobiotic accumulation. As a member of the ABC family of proteins, expression of this protein confers the multixenobiotic resistant (MXR) phenotype in aquatic organisms, including fish. To identify tissues protected by or contributing to the elimination of xenobiotics via P-gp, tissue-specific P-gp isoforms abcb1a and abcb1b transcript expression were measured in rainbow trout (Oncorhynchus mykiss). Tissues investigated included the proximal and distal intestines, liver, head kidney, gills, gonads, and 5 regions of the brain: olfactory lobe, cerebrum, optic lobe, cerebellum and medulla. Abcb1a transcript was more widely expressed across tissues and generally showed higher transcript expression than abcb1b. Deviation from this trend occurred in the gills, cerebrum and head kidney, where transcript levels were relatively equal between abcb1a and abcb1b. Intestinal tissues had greater abcb1a expression than abcb1b (3 orders of magnitude). Abcb1b was absent from liver tissue indicating that abcb1a is relied upon for hepatic defense. This study suggests that abcb1b acts to protect sensitive organs from compounds in the systemic circulation (brain and gonad), whereas abcb1a acts primarily in an elimination role in organs such as liver and intestine. To determine if P-gp induction alters transcript responses, the antifungal mammalian Pregnane-X-Receptor (PXR) agonist clotrimazole (CTZ) was used. CTZ-treated rainbow trout showed significantly increased abcb1b transcript expression in the optic lobe and distal intestine, providing evidence that trout PXR exhibits a similar substrate base as mammalian PXR, albeit selectively in regions of the brain and intestine.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Clotrimazole/pharmacology , Fish Proteins/metabolism , Oncorhynchus mykiss/metabolism , RNA, Messenger/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Antifungal Agents/pharmacology , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Gills/drug effects , Gills/metabolism , Liver/drug effects , Liver/metabolism , Oncorhynchus mykiss/genetics , Organ Specificity , Protein Isoforms , RNA, Messenger/genetics
2.
Aquat Toxicol ; 220: 105383, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924587

ABSTRACT

Current and proposed transcontinental pipelines for the transport of diluted bitumen (dilbit) from the Canadian oil sands traverse the coastal watersheds of British Columbia, habitat essential to Pacific salmonids. To determine the potential risks posed to these keystone species, juvenile sockeye (Oncorhynchus nerka; 1+ parr) were acutely (24-96 h) or subchronically (21-42 d) exposed to 4 concentrations of the water-soluble fraction (WSF) of unweathered Cold Lake Blend dilbit (initial total PAC concentrations: 0, 13.7, 34.7 and 124.5 µg/L) in a flow-through system. Dilbit effects on iono-osmoregulation, the physiological stress response, and the immune system were assessed by both biochemical and functional assays. Hydrocarbon bioavailability was evidenced by a significant induction of liver ethoxyresorufin-O-deethylase (EROD) activity in exposed fish. Acute and subchronic exposure significantly reduced gill Na+-K+-ATPase activity and resulted in lower plasma osmolality, Cl-, and Na+ concentrations. Acute exposure to dilbit resulted in a classic physiological stress response, however at 21 d of exposure, plasma cortisol remained elevated while other measured parameters had returned to baseline values. A compromised immune system was demonstrated by a 29.5 % higher mortality in fish challenged with Vibrio (Listonella) anguillarum following dilbit exposure compared to unexposed controls. Exposure of juvenile salmonids to the WSF of dilbit (at TPAC concentrations at the ppb level) resulted in sublethal effects that included a classic physiological stress response, and alterations in iono-osmoregulatory homeostasis and immunological performance.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Hydrocarbons/toxicity , Liver/drug effects , Oil and Gas Fields , Salmon/metabolism , Water Pollutants, Chemical/toxicity , Animals , British Columbia , Dose-Response Relationship, Drug , Ecosystem , Hydrocarbons/chemistry , Liver/enzymology , Salmon/growth & development , Solubility , Water Pollutants, Chemical/chemistry
3.
Article in English | MEDLINE | ID: mdl-26996967

ABSTRACT

Estrone (E1), a natural estrogen hormone found in sewage effluents and surface waters, has known endocrine disrupting effects in fish, thus, it is a contaminant of emerging concern. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to an environmentally-relevant concentration of E1 (24ng/L E1 [0.1nM]) for 7d and then placed in clean water for a 9d recovery period. RNA sequencing showed transcripts from numerous affected biological processes (e.g. immune, metabolic, apoptosis, clotting, and endocrine) were altered by E1 after 4d of treatment. The time course of E1-inducible responses relating to vitellogenesis was examined daily during the two phases of exposure. Hepatic gene expression alterations evaluated by quantitative polymerase chain reaction (QPCR) were found during the treatment period for vitellogenin (VTG), vitelline envelope proteins (VEPs) α, ß and γ, and estrogen receptor α1 (ERα1) transcripts. ERα1 was the only transcript induced each day during the treatment phase, thus it was a good indicator of E1 exposure. Gradual increases occurred in VEPß and VEPγ transcripts, peaking at d7. VTG transcript was only elevated at d4, making it less sensitive than VEPs to this low-level E1 treatment. Inductions of ERα1, VEPα, VEPß and VEPγ transcripts ceased 1d into the recovery phase. Plasma VTG protein concentrations were not immediately elevated but peaked 7d into the recovery phase. Thus, elevated vitellogenesis-related gene expression and protein production occurred slowly but steadily at this concentration of E1, confirming the sequence of events for transcripts and VTG protein responses to xenoestrogen exposure.


Subject(s)
Estrone/pharmacology , Gene Expression Regulation/drug effects , Liver/metabolism , Oncorhynchus mykiss/genetics , Transcriptome/drug effects , Vitellogenins/blood , Animals , Computational Biology , Estrogens/pharmacology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , Liver/drug effects , Molecular Sequence Annotation , Oncorhynchus mykiss/blood , Oncorhynchus mykiss/growth & development , Time Factors
4.
Water Res ; 62: 271-80, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24963889

ABSTRACT

Pharmaceutical and personal care products (PPCPs) can evade degradation in sewage treatment plants (STPs) and can be chronically discharged into the environment, causing concern for aquatic organisms, wildlife, and humans that may be exposed to these bioactive chemicals. The ability of a common STP process, conventional activated sludge (CAS), to remove PPCPs (caffeine, di(2-ethylhexyl)phthalate, estrone, 17α-ethinylestradiol, ibuprofen, naproxen, 4-nonylphenol, tonalide, triclocarban and triclosan) from a synthetic wastewater was evaluated in the present study. The removal of individual PPCPs by the laboratory-scale CAS treatment plant ranged from 40 to 99.6%. While the efficiency of removal for some compounds was high, remaining quantities have the potential to affect aquatic organisms even at low concentrations. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to influent recreated model wastewater with methanol (IM, solvent control) or with PPCP cocktail (IC), or CAS-treated effluent wastewater with methanol (EM, treated control) or with PPCP cocktail (EC). Alterations in hepatic gene expression (evaluated using a quantitative nuclease protection plex assay) and plasma vitellogenin (VTG) protein concentrations occurred in exposed fish. Although there was partial PPCP removal by CAS treatment, the 20% lower VTG transcript levels and 83% lower plasma VTG protein concentration found in EC-exposed fish compared to IC-exposed fish were not statistically significant. Thus, estrogenic activity found in the influent was retained in the effluent even though typical percent removal levels were achieved raising the issue that greater reduction in contaminant load is required to address hormone active agents.


Subject(s)
Household Products/analysis , Oncorhynchus mykiss/metabolism , Pharmaceutical Preparations/isolation & purification , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/toxicity , Water Purification/methods , Animals , Environmental Exposure , Female , Gene Expression Regulation/drug effects , Male , Oncorhynchus mykiss/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vitellogenins/genetics , Vitellogenins/metabolism , Waste Disposal, Fluid
5.
Gen Comp Endocrinol ; 180: 24-32, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23036733

ABSTRACT

While the endocrine system is known to modulate immune function in vertebrates, the role of 17ß-estradiol (E2) in cellular immune function of teleosts is poorly understood. The cellular and molecular responses of juvenile rainbow trout (Oncorhynchus mykiss) to E2 treatment were evaluated by exposing fish to 0.47±0.02µg/L E2 (mean±SEM) for either 2 or 7d, with a subsequent 14d recovery period. After 2 and 7d of exposure to E2, hematocrit was significantly lower than in control fish. Lipopolysaccharide-induced lymphocyte proliferation was elevated on day 2 and concanavalin A-induced lymphocyte proliferation was reduced following 7d of E2 exposure. Four estrogen receptor (ER) transcripts were identified in purified trout head kidney leukocytes (HKL) and peripheral blood leukocytes (PBL). While the mRNA abundance of ERß1 and ERß2 was unaffected by treatment, ERα1 was up-regulated in HKL and PBL following 7d of E2 exposure. ERα2 was up-regulated in HKL after 7d of E2 exposure, but down-regulated in PBL after 2 and 7d of treatment. All parameters that were altered during the E2 exposure period returned to baseline levels following the recovery period. This study reports the presence of the full repertoire of ERs in purified HKL for the first time, and demonstrates that ERα transcript abundance in leukocytes can be regulated by waterborne E2 exposure. It also demonstrated that physiologically-relevant concentrations of E2 can modulate several immune functions in salmonids, which may have widespread implications for xenoestrogen-associated immunotoxicity in feral fish populations inhabiting contaminated aquatic environments.


Subject(s)
Estradiol/pharmacology , Leukocytes/drug effects , Leukocytes/metabolism , Oncorhynchus mykiss/metabolism , Receptors, Estrogen/metabolism , Animals , Cell Proliferation/drug effects , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...