Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22687, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114526

ABSTRACT

The purpose of this study was to investigate the performances of the tumor response prediction prior to neoadjuvant chemotherapy based on quantitative ultrasound, tumour core-margin, texture derivative analyses, and molecular parameters in a large cohort of patients (n = 208) with locally advanced and earlier-stage breast cancer and combined them to best determine tumour responses with machine learning approach. Two multi-features response prediction algorithms using a k-nearest neighbour and support vector machine were developed with leave-one-out and hold-out cross-validation methods to evaluate the performance of the response prediction models. In a leave-one-out approach, the quantitative ultrasound-texture analysis based model attained good classification performance with 80% of accuracy and AUC of 0.83. Including molecular subtype in the model improved the performance to 83% of accuracy and 0.87 of AUC. Due to limited number of samples in the training process, a model developed with a hold-out approach exhibited a slightly higher bias error in classification performance. The most relevant features selected in predicting the response groups are core-to-margin, texture-derivative, and molecular subtype. These results imply that that baseline tumour-margin, texture derivative analysis methods combined with molecular subtype can potentially be used for the prediction of ultimate treatment response in patients prior to neoadjuvant chemotherapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy/methods , Chemotherapy, Adjuvant , Ultrasonography , Algorithms , Retrospective Studies
2.
Oncotarget ; 12(2): 81-94, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33520113

ABSTRACT

PURPOSE: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation. MATERIALS AND METHODS: QUS Spectroscopy provided parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average-scatterer-diameter (ASD), and average-acoustic-concentration (AAC) in 78 patients with locally advanced breast cancer (LABC) undergoing NAC. Ultrasound radiofrequency data were collected from Sunnybrook Health Sciences Center (SHSC), University of Texas MD Anderson Cancer Center (MD-ACC), and St. Michaels Hospital (SMH) using two different systems. Texture analysis was used to quantify heterogeneities of QUS parametric images. Further, a second-pass texture analysis was applied to obtain texture-derivate features. QUS, texture- and texture-derivate parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis for developing a response predictive model to classify responders versus non-responders. Model performance was assessed using leave-one-out cross-validation. Three standard classification algorithms including a linear discriminant analysis (LDA), k-nearest-neighbors (KNN), and support vector machines-radial basis function (SVM-RBF) were evaluated. RESULTS: A combination of tumour core and margin classification resulted in a peak response prediction performance of 88% sensitivity, 78% specificity, 84% accuracy, 0.86 AUC, 84% PPV, and 83% NPV, achieved using the SVM-RBF classification algorithm. Other parameters and classifiers performed less well running from 66% to 80% accuracy. CONCLUSIONS: A QUS-based framework and novel texture-derivative method enabled accurate prediction of responses to NAC. Multi-centric response predictive model provides indications of the robustness of the approach to variations due to different ultrasound systems and acquisition parameters.

3.
PLoS One ; 15(12): e0244965, 2020.
Article in English | MEDLINE | ID: mdl-33382837

ABSTRACT

PURPOSE: Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions. METHODS: Parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation. RESULTS: Classifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features. CONCLUSIONS: A QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Algorithms , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male
4.
Oncotarget ; 11(42): 3782-3792, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33144919

ABSTRACT

BACKGROUND: To investigate quantitative ultrasound (QUS) based higher-order texture derivatives in predicting the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). MATERIALS AND METHODS: 100 Patients with LABC were scanned before starting NAC. Five QUS parametric image-types were generated from radio-frequency data over the tumor volume. From each QUS parametric-image, 4 grey level co-occurrence matrix-based texture images were derived (20 QUS-Tex1), which were further processed to create texture derivatives (80 QUS-Tex1-Tex2). Patients were classified into responders and non-responders based on clinical/pathological responses to treatment. Three machine learning algorithms based on linear discriminant (FLD), k-nearest-neighbors (KNN), and support vector machine (SVM) were used for developing radiomic models of response prediction. RESULTS: A KNN-model provided the best results with sensitivity, specificity, accuracy, and area under curve (AUC) of 87%, 81%, 82%, and 0.86, respectively. The most helpful features in separating the two response groups were QUS-Tex1-Tex2 features. The 5-year recurrence-free survival (RFS) calculated for KNN predicted responders and non-responders using QUS-Tex1-Tex2 model were comparable to RFS for the actual response groups. CONCLUSIONS: We report the first study demonstrating QUS texture-derivative methods in predicting NAC responses in LABC, which leads to better results compared to using texture features alone.

5.
Transl Oncol ; 13(10): 100827, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32663657

ABSTRACT

PURPOSE: Accurate and timely diagnosis of breast cancer is extremely important because of its high incidence and high morbidity. Early diagnosis of breast cancer through screening can improve overall prognosis. Currently, biopsy remains as the gold standard for tumor pathological confirmation. Development of diagnostic imaging techniques for rapid and accurate characterization of breast lesions is required. We aim to evaluate the usefulness of texture-derivate features of QUS spectral parametric images for non-invasive characterization of breast lesions. METHODS: QUS Spectroscopy was used to determine parametric images of mid-band fit (MBF), spectral slope (SS), spectral intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) in 204 patients with suspicious breast lesions. Subsequently, texture analysis techniques were used to generate texture maps from parametric images to quantify heterogeneities of QUS parametric images. Further, a second-pass texture analysis was applied to obtain texture-derivate features. QUS parameters, texture-parameters and texture-derivate parameters were determined from both tumor core and a 5-mm tumor margin and were used in comparison to histopathological analysis in order to develop a diagnostic model for classifying breast lesions as either benign or malignant. Both leave-one-out and hold-out cross-validations were used to evaluate the performance of the diagnostic model. Three standard classification algorithms including a linear discriminant analysis (LDA), k-nearest neighbors (KNN), and support vector machines-radial basis function (SVM-RBF) were evaluated. RESULTS: Core and margin information using the SVM-RBF attained the best classification performance of 90% sensitivity, 92% specificity, 91% accuracy, and 0.93 AUC utilizing QUS parameters and their texture derivatives, evaluated using leave-one-out cross-validation. Implementation of hold-out cross-validation using combination of both core and margin information and SVM-RBF achieved average accuracy and AUC of 88% and 0.92, respectively. CONCLUSIONS: QUS-based framework and derivative texture methods enable accurate classification of breast lesions. Evaluation of the proposed technique on a large cohort using hold-out cross-validation demonstrates its robustness and its generalization.

6.
Ultrason Imaging ; 41(5): 251-270, 2019 09.
Article in English | MEDLINE | ID: mdl-31271117

ABSTRACT

Measurement of corneal biomechanical properties can aid in predicting corneal responses to diseases and surgeries. For delineation of spatially resolved distribution of corneal elasticity, high-resolution elastography system is required. In this study, we demonstrate a high-resolution elastography system using high-frequency ultrasound for ex-vivo measurement of intraocular pressure (IOP)-dependent corneal wave speed. Tone bursts of 500 Hz vibrations were generated on the corneal surface using an electromagnetic shaker. A 35-MHz single-element transducer was used to track the resulting anti-symmetrical Lamb wave in the cornea. We acquired spatially resolved wave speed images of the cornea at IOPs of 7, 11, 15, 18, 22, and 29 mmHg. The IOP dependence of corneal wave speed is apparent from these images. Statistical analysis of measured wave speed as a function of IOP revealed a linear relation between wave speed and IOP cs = 0.37 + 0.22 × IOP, with the coefficient of determination R2 = 0.86. We also observed depth-dependent variations of wave speed in the cornea, decreasing from anterior toward posterior. This depth dependence is more pronounced at higher IOP values. This study demonstrates the potential of high-frequency ultrasound elastography in the characterization of spatially resolved corneal biomechanical properties.


Subject(s)
Cornea/physiology , Elasticity Imaging Techniques/methods , Intraocular Pressure/physiology , Animals , Cornea/diagnostic imaging , Models, Animal , Swine
7.
Article in English | MEDLINE | ID: mdl-26670847

ABSTRACT

We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 µm to 20 µm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.


Subject(s)
Elastic Modulus/physiology , Elasticity Imaging Techniques/instrumentation , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Models, Biological , Shear Strength/physiology , Computer Simulation , Humans , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...