Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1359148, 2024.
Article in English | MEDLINE | ID: mdl-38756659

ABSTRACT

Objective: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response to NAC for patients with Locally Advanced Breast Cancer (LABC) before treatment initiation could be beneficial to optimize therapy, ensuring the administration of effective treatments. The objective of the work here was to develop a predictive model to predict tumor response to NAC for LABC using deep learning networks and computed tomography (CT). Materials and methods: Several deep learning approaches were investigated including ViT transformer and VGG16, VGG19, ResNet-50, Res-Net-101, Res-Net-152, InceptionV3 and Xception transfer learning networks. These deep learning networks were applied on CT images to assess the response to NAC. Performance was evaluated based on balanced_accuracy, accuracy, sensitivity and specificity classification metrics. A ViT transformer was applied to utilize the attention mechanism in order to increase the weight of important part image which leads to better discrimination between classes. Results: Amongst the 117 LABC patients studied, 82 (70%) had clinical-pathological response and 35 (30%) had no response to NAC. The ViT transformer obtained the best performance range (accuracy = 71 ± 3% to accuracy = 77 ± 4%, specificity = 86 ± 6% to specificity = 76 ± 3%, sensitivity = 56 ± 4% to sensitivity = 52 ± 4%, and balanced_accuracy=69 ± 3% to balanced_accuracy=69 ± 3%) depending on the split ratio of train-data and test-data. Xception network obtained the second best results (accuracy = 72 ± 4% to accuracy = 65 ± 4, specificity = 81 ± 6% to specificity = 73 ± 3%, sensitivity = 55 ± 4% to sensitivity = 52 ± 5%, and balanced_accuracy = 66 ± 5% to balanced_accuracy = 60 ± 4%). The worst results were obtained using VGG-16 transfer learning network. Conclusion: Deep learning networks in conjunction with CT imaging are able to predict the tumor response to NAC for patients with LABC prior to start. A ViT transformer could obtain the best performance, which demonstrated the importance of attention mechanism.

2.
Radiol Imaging Cancer ; 6(2): e230029, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38391311

ABSTRACT

Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Keywords: Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Head and Neck Neoplasms , Aged , Female , Humans , Male , Middle Aged , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Neck , Prospective Studies , Radiomics , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/radiotherapy
3.
J Ultrasound Med ; 43(1): 137-150, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873733

ABSTRACT

OBJECTIVES: Quantitative ultrasound (QUS) is a noninvasive imaging technique that can be used for assessing response to anticancer treatment. In the present study, tumor cell death response to the ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment was monitored in vivo using QUS. METHODS: Human breast cancer cell lines (MDA-MB-231) were grown in mice and were treated with HT (10, 30, 50, and 60 minutes) alone, or in combination with USMB. Treatment effects were examined using QUS with a center frequency of 25 MHz (bandwidth range: 16 to 32 MHz). Backscattered radiofrequency (RF) data were acquired from tumors subjected to treatment. Ultrasound parameters such as average acoustic concentration (AAC) and average scatterer diameter (ASD), were estimated 24 hours prior and posttreatment. Additionally, texture features: contrast (CON), correlation (COR), energy (ENE), and homogeneity (HOM) were extracted from QUS parametric maps. All estimated parameters were compared with histopathological findings. RESULTS: The findings of our study demonstrated a significant increase in QUS parameters in both treatment conditions: HT alone (starting from 30 minutes of heat exposure) and combined treatment of HT plus USMB finally reaching a maximum at 50 minutes of heat exposure. Increase in AAC for 50 minutes HT alone and USMB +50 minutes was found to be 5.19 ± 0.417% and 5.91 ± 1.11%, respectively, compared to the control group with AAC value of 1.00 ± 0.44%. Furthermore, between the treatment groups, ΔASD-ENE values for USMB +30 minutes HT significantly reduced, depicting 0.00062 ± 0.00096% compared to 30 minutes HT only group, showing 0.0058 ± 0.0013%. Further, results obtained from the histological analysis indicated greater cell death and reduced nucleus size in both HT alone and HT combined with USMB. CONCLUSION: The texture-based QUS parameters indicated a correlation with microstructural changes obtained from histological data. This work demonstrated the use of QUS to detect HT treatment effects in breast cancer tumors in vivo.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Mammary Neoplasms, Animal , Humans , Animals , Mice , Female , Microbubbles , Ultrasonography/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Combined Modality Therapy
4.
Cancers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36551702

ABSTRACT

Quantitative ultrasound (QUS) is a non-invasive novel technique that allows treatment response monitoring. Studies have shown that QUS backscatter variables strongly correlate with changes observed microscopically. Increases in cell death result in significant alterations in ultrasound backscatter parameters. In particular, the parameters related to scatterer size and scatterer concentration tend to increase in relation to cell death. The use of QUS in monitoring tumor response has been discussed in several preclinical and clinical studies. Most of the preclinical studies have utilized QUS for evaluating cell death response by differentiating between viable cells and dead cells. In addition, clinical studies have incorporated QUS mostly for tissue characterization, including classifying benign versus malignant breast lesions, as well as responder versus non-responder patients. In this review, we highlight some of the important findings of previous preclinical and clinical studies and expand the applicability and therapeutic benefits of QUS in clinical settings. We summarized some recent clinical research advances in ultrasound-based radiomics analysis for monitoring and predicting treatment response and characterizing benign and malignant breast lesions. We also discuss current challenges, limitations, and future prospects of QUS-radiomics.

5.
Oncotarget ; 12(25): 2437-2448, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34917262

ABSTRACT

BACKGROUND: The purpose of the study was to investigate the role of pre-treatment quantitative ultrasound (QUS)-radiomics in predicting recurrence for patients with locally advanced breast cancer (LABC). MATERIALS AND METHODS: A prospective study was conducted in patients with LABC (n = 83). Primary tumours were scanned using a clinical ultrasound device before starting treatment. Ninety-five imaging features were extracted-spectral features, texture, and texture-derivatives. Patients were determined to have recurrence or no recurrence based on clinical outcomes. Machine learning classifiers with k-nearest neighbour (KNN) and support vector machine (SVM) were evaluated for model development using a maximum of 3 features and leave-one-out cross-validation. RESULTS: With a median follow up of 69 months (range 7-118 months), 28 patients had disease recurrence (local or distant). The best classification results were obtained using an SVM classifier with a sensitivity, specificity, accuracy and area under curve of 71%, 87%, 82%, and 0.76, respectively. Using the SVM model for the predicted non-recurrence and recurrence groups, the estimated 5-year recurrence-free survival was 83% and 54% (p = 0.003), and the predicted 5-year overall survival was 85% and 74% (p = 0.083), respectively. CONCLUSIONS: A QUS-radiomics model using higher-order texture derivatives can identify patients with LABC at higher risk of disease recurrence before starting treatment.

6.
BMC Cancer ; 21(1): 991, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479484

ABSTRACT

BACKGROUND: The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. RESULTS: The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. CONCLUSION: Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


Subject(s)
Hyperthermia, Induced/methods , Prostatic Neoplasms/therapy , Ultrasonics/methods , Animals , Apoptosis , Cell Proliferation , Combined Modality Therapy , Humans , Male , Mice , Mice, SCID , Microbubbles , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Am J Transl Res ; 13(5): 4437-4449, 2021.
Article in English | MEDLINE | ID: mdl-34150025

ABSTRACT

Quantitative ultrasound (QUS) is a non-invasive imaging modality that permits the detection of tumor response following various cancer therapies. Based on ultrasound signal scattering from the biological system, scatterer size, and concentration of microscopic scatterers, QUS enables the rapid characterization of tumor cell death. In this study, tumor response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) in tumor-bearing mice, with prostate cancer xenografts (PC3), was examined using QUS. Treatment conditions included 1% (v/v) Definity microbubbles stimulated at ultrasound pressures (0, 246, and 570 kPa) and HT treatment (0, 10, 40, and 50 minutes). Three ultrasound backscatter parameters, mid-band fit (MBF), 0-MHz spectral intercept (SI), and spectral slope (SS) were estimated prior to, and 24 hours after treatment. Additionally, histological assessment of tumor cell death and tissue microstructural changes was used to complement the results obtained from ultrasound data. Results demonstrated a significant increase in QUS parameters (MBF and SI) followed combined USMB and HT treatment (P<0.05). In contrast, the backscatter parameters from the control (untreated) group, and USMB only group showed minimal changes (P>0.05). Furthermore, histological data demonstrated increased cell death and prominent changes in cellular and tissue structure, nucleus size, and subcellular constituent orientation followed combined treatments. The findings suggested that QUS parameters derived from the ultrasound backscattered power spectrum may be used to detect HT treatment effects in prostate cancer tumors in vivo.

8.
Sci Rep ; 11(1): 6117, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731738

ABSTRACT

To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival.Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.


Subject(s)
Head and Neck Neoplasms , Neoplasm Recurrence, Local , Radiation Tolerance , Squamous Cell Carcinoma of Head and Neck , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/radiotherapy , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/radiotherapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...