Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Genet Mol Biol ; 47(Suppl 1): e20230317, 2024.
Article in English | MEDLINE | ID: mdl-38829285

ABSTRACT

In the search for alternatives to overcome the challenge imposed by drug resistance development in cancer treatment, the modulation of autophagy has emerged as a promising alternative that has achieved good results in clinical trials. Nevertheless, most of these studies have overlooked a novel and selective type of autophagy: chaperone-mediated autophagy (CMA). Following its discovery, research into CMA's contribution to tumor progression has accelerated rapidly. Therefore, we now understand that stress conditions are the primary signal responsible for modulating CMA in cancer cells. In turn, the degradation of proteins by CMA can offer important advantages for tumorigenesis, since tumor suppressor proteins are CMA targets. Such mutual interaction between the tumor microenvironment and CMA also plays a crucial part in establishing therapy resistance, making this discussion the focus of the present review. Thus, we highlight how suppression of LAMP2A can enhance the sensitivity of cancer cells to several drugs, just as downregulation of CMA activity can lead to resistance in certain cases. Given this panorama, it is important to identify selective modulators of CMA to enhance the therapeutic response.

2.
Biomedicines ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37189700

ABSTRACT

The transcription factor NRF2 is constitutively active in glioblastoma, a highly aggressive brain tumor subtype with poor prognosis. Temozolomide (TMZ) is the primary chemotherapeutic agent for this type of tumor treatment, but resistance to this drug is often observed. This review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ. Mechanistically, NRF2 increases drug detoxification, autophagy, DNA repair, and decreases drug accumulation and apoptotic signaling. Our review also presents potential strategies for targeting NRF2 as an adjuvant therapy to overcome TMZ chemoresistance in glioblastoma. Specific molecular pathways, including MAPKs, GSK3ß, ßTRCP, PI3K, AKT, and GBP, that modulate NRF2 expression leading to TMZ resistance are discussed, along with the importance of identifying NRF2 modulators to reverse TMZ resistance and develop new therapeutic targets. Despite the significant progress in understanding the role of NRF2 in GBM, there are still unanswered questions regarding its regulation and downstream effects. Future research should focus on elucidating the precise mechanisms by which NRF2 mediates resistance to TMZ, and identifying potential novel targets for therapeutic intervention.

3.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805884

ABSTRACT

Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients' low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients. Thus, here, we present an overview of the mechanisms of the iron-dependent cell death and summarize the current findings of ferroptosis modulation on glioblastoma including its non-canonical pathway. Moreover, we focused on new ferroptosis-inducing compounds for glioma treatment, and we highlight the key ferroptosis-related genes to glioma prognosis, which could be further explored. Thereby, understanding how to trigger ferroptosis in glioblastoma may provide promising pharmacological targets and indicate new therapeutic approaches to increase the survival of glioblastoma patients.


Subject(s)
Ferroptosis , Glioblastoma , Glioma , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Iron/metabolism , Neoplasm Recurrence, Local
4.
Int J Mol Sci, v. 23, 6879, jun. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4418

ABSTRACT

Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients’ low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients. Thus, here, we present an overview of the mechanisms of the iron-dependent cell death and summarize the current findings of ferroptosis modulation on glioblastoma including its non-canonical pathway. Moreover, we focused on new ferroptosis-inducing compounds for glioma treatment, and we highlight the key ferroptosis-related genes to glioma prognosis, which could be further explored. Thereby, understanding how to trigger ferroptosis in glioblastoma may provide promising pharmacological targets and indicate new therapeutic approaches to increase the survival of glioblastoma patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...