Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Drug Metab Dispos ; 36(2): 260-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17962374

ABSTRACT

Carboxylic acid-containing drugs are metabolized mainly through the formation of glucuronide and coenzyme A esters. These conjugates have been suspected to be responsible for the toxicity of several nonsteroidal anti-inflammatory drugs because of the reactivity of the electrophilic ester bond. In the present study we investigated the reactivity of ketoprofenyl-acylglucuronide (KPF-OG) and ketoprofenyl-acyl-coenzyme A (KPF-SCoA) toward cytosolic rat liver glutathione S-transferases (GST). We observed that KPF-SCoA, but not KPF-OG inhibited the conjugation of 1-chloro-2,4-dinitrobenzene and 4-nitroquinoline N-oxide catalyzed by both purified cytosolic rat liver GST and GST from FAO and H5-6 rat hepatoma cell lines. Photoaffinity labeling with KPF-SCoA suggested that the binding of this metabolite may overlap the binding site of 4-methylumbelliferone sulfate. Furthermore, high-performance liquid chromatography and mass spectrometry analysis showed that both hydrolysis and transacylation reactions were observed in the presence of GST and glutathione. The formation of ketoprofenyl-S-acyl-glutathione could be kinetically characterized (apparent K(m) = 196.0 +/- 70.6 microM). It is concluded that KPF-SCoA is both a GST inhibitor and a substrate of a GST-dependent transacylation reaction. The reactivity and inhibitory potency of thioester CoA derivatives toward GST may have potential implications on the reported in vivo toxicity of some carboxylic acid-containing drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Coenzyme A/metabolism , Glucuronides/metabolism , Glutathione Transferase/antagonists & inhibitors , Ketoprofen/metabolism , Animals , Cell Line, Tumor , Cytosol/enzymology , Glutathione/antagonists & inhibitors , Glutathione/metabolism , Glutathione Transferase/metabolism , Liver/enzymology , Rats
2.
Anticancer Res ; 26(5A): 3595-600, 2006.
Article in English | MEDLINE | ID: mdl-17094488

ABSTRACT

The impact of the anti-cancer drugs cisplatin (CDDP) and adriamycin (ADR) was investigated on sensitive and resistant MCF-7-derived human breast cancer cells. Cytotoxicity was evaluated by MTT assay, reactive oxygen species (ROS), apoptosis and necrosis by flow cytometry, glutathione (GSH) by HPLC, and Bcl-2, Bax and PARP expression by Western blot. A perturbation of ROS and intracellular GSH levels, and the enhancement of both apoptosis and necrosis were observed in sensitive cells. Transfected MCF-7 cells overexpressing the anti-apoptotic Bcl-2 protein, as well as MCF-7-derived vincristine-resistant cell line (Vcr-R) were resistant to both drugs. This resistance was clearly associated with an unaltered GSH level and with the inhibition of an early GSH efflux. Vcr-R cell resistance seemed to rely on a different mechanism, since it was found to be independent of Bcl-2 expression. Since Bcl-2 overexpression confers the strongest degree of resistance of MCF-7-derived cells, our observations further highlight Bcl-2 as a prime pharmacological target to sensitize cancer cells to chemotherapeutic agents.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Glutathione/metabolism , Apoptosis/drug effects , Blotting, Western , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Chromatography, High Pressure Liquid , Drug Resistance, Multiple , Flow Cytometry , Humans , Necrosis , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured , Vincristine/pharmacology , bcl-2-Associated X Protein/metabolism
3.
Int J Oncol ; 25(6): 1701-11, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15547708

ABSTRACT

Sodium butyrate (NaBu), a potent histone deacetylase inhibitor, modulates the expression of a large number of genes. The purpose of this study was to determine whether this dietary agent could induce apoptosis in MCF-7 cells, a breast cancer cell line that lacks caspase-3 activity, and to identify the mechanisms that underlie NaBu toxicity in these cells. Cell viability assessed by the activity of mitochondrial succinate dehydrogenase (MTT assay) revealed a dose-dependent reduction of MCF-7 cellular growth in response to NaBu treatment. Restoring caspase-3 function by transfection did not modify NaBu toxicity in these cells. Following a 24-h exposure, NaBu-induced cell growth arrest in G2/M phase in a dose-dependent fashion in association with stable expression of CDC25A, a G1-specific regulator of the cell cycle. The anti-proliferative effects of NaBu were accompanied by diminished expression of p53. Similarly, mRNA encoding c-Myc, a well-known regulator of p53, was decreased in NaBu-treated cells, while p21(Waf1/Cip1) mRNA was increased. Furthermore, bax mRNA level was up-regulated whereas a decline in Bcl-2 both protein and mRNA levels were detected in NaBu-treated cells. Apoptosis was observed following a treatment with 2 mM NaBu, reflected by Annexin-V staining and by the cleavage of poly(ADP-ribose) polymerase, whereas DNA laddering was absent. Apoptosis was associated with a pronounced depletion of intracellular glutathione levels. Finally, NaBu treatment significantly increased the activities of several antioxidant enzymes, including glutathione reductase, glutathione peroxidase, and catalase. Together, these data suggest that the pro-apoptotic effects of NaBu observed in MCF-7 cells are associated with oxidative stress.


Subject(s)
Apoptosis/physiology , Breast Neoplasms/pathology , Butyrates/pharmacology , Glutathione/metabolism , Oxidative Stress , Antioxidants/pharmacology , Caspase 3 , Caspases/pharmacology , Cell Cycle , Cell Survival , Diet , Enzyme Inhibitors/pharmacology , Female , Histone Deacetylase Inhibitors , Humans , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL