Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 4(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-31045582

ABSTRACT

Traumatic spinal cord injury (SCI) triggers an acute-phase response that leads to systemic inflammation and rapid mobilization of bone marrow (BM) neutrophils into the blood. These mobilized neutrophils then accumulate in visceral organs and the injured spinal cord where they cause inflammatory tissue damage. The receptor for complement activation product 3a, C3aR1, has been implicated in negatively regulating the BM neutrophil response to tissue injury. However, the mechanism via which C3aR1 controls BM neutrophil mobilization, and also its influence over SCI outcomes, are unknown. Here, we show that the C3a/C3aR1 axis exerts neuroprotection in SCI by acting as a physiological antagonist against neutrophil chemotactic signals. We show that C3aR1 engages phosphatase and tensin homolog (PTEN), a negative regulator of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, to restrain C-X-C chemokine receptor type 2-driven BM neutrophil mobilization following trauma. These findings are of direct clinical significance as lower circulating neutrophil numbers at presentation were identified as a marker for improved recovery in human SCI. Our work thus identifies C3aR1 and its downstream intermediary, PTEN, as therapeutic targets to broadly inhibit neutrophil mobilization/recruitment following tissue injury and reduce inflammatory pathology.


Subject(s)
Neutrophils/metabolism , Receptors, Complement/genetics , Receptors, Complement/metabolism , Receptors, Interleukin-8B/metabolism , Spinal Cord Injuries/metabolism , Adult , Animals , Bone Marrow/pathology , Cell Adhesion , Cell Movement , Disease Models, Animal , Female , Humans , Inflammation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases , Receptor, Anaphylatoxin C5a/genetics , Spinal Cord Injuries/pathology , Transcriptome , Wounds and Injuries/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...