Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Am Heart Assoc ; 13(3): e031377, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293922

ABSTRACT

BACKGROUND: Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS: We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS: Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.


Subject(s)
Aortic Stenosis, Supravalvular , Williams Syndrome , Humans , Williams Syndrome/genetics , Genome-Wide Association Study , Proteomics , Rare Diseases , Aortic Stenosis, Supravalvular/genetics , Aortic Stenosis, Supravalvular/metabolism , Aortic Stenosis, Supravalvular/surgery
2.
NPJ Genom Med ; 8(1): 25, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37709781

ABSTRACT

Williams-Beuren syndrome (WBS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders caused by deletion and duplication of a 1.5 Mb region that includes at least five genes with a known role in epigenetic regulation. We have shown that CNV of this chromosome segment causes dose-dependent, genome-wide changes in DNA methylation, but the specific genes driving these changes are unknown. We measured genome-wide whole blood DNA methylation in six participants with atypical CNV of 7q11.23 (three with deletions and three with duplications) using the Illumina HumanMethylation450k array and compared their profiles with those from groups of individuals with classic WBS or classic Dup7 and with typically developing (TD) controls. Across the top 1000 most variable positions we found that only the atypical rearrangements that changed the copy number of GTF2IRD1 and/or GTF2I (coding for the TFII-IRD1 and TFII-I proteins) clustered with their respective syndromic cohorts. This finding was supported by results from hierarchical clustering across a selection of differentially methylated CpGs, in addition to pyrosequencing validation. These findings suggest that CNV of the GTF2I genes at the telomeric end of the 7q11.23 interval is a key contributor to the large changes in DNA methylation that are seen in blood DNA from our WBS and Dup7 cohorts, compared to TD controls. Our findings suggest that members of the TFII-I protein family are involved in epigenetic processes that alter DNA methylation on a genome-wide level.

3.
Nat Rev Dis Primers ; 7(1): 42, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140529

ABSTRACT

Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 1:7,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements at meiosis. The deletion size is similar across most individuals with WS and leads to the loss of one copy of 25-27 genes on chromosome 7q11.23. The resulting unique disorder affects multiple systems, with cardinal features including but not limited to cardiovascular disease (characteristically stenosis of the great arteries and most notably supravalvar aortic stenosis), a distinctive craniofacial appearance, and a specific cognitive and behavioural profile that includes intellectual disability and hypersociability. Genotype-phenotype evidence is strongest for ELN, the gene encoding elastin, which is responsible for the vascular and connective tissue features of WS, and for the transcription factor genes GTF2I and GTF2IRD1, which are known to affect intellectual ability, social functioning and anxiety. Mounting evidence also ascribes phenotypic consequences to the deletion of BAZ1B, LIMK1, STX1A and MLXIPL, but more work is needed to understand the mechanism by which these deletions contribute to clinical outcomes. The age of diagnosis has fallen in regions of the world where technological advances, such as chromosomal microarray, enable clinicians to make the diagnosis of WS without formally suspecting it, allowing earlier intervention by medical and developmental specialists. Phenotypic variability is considerable for all cardinal features of WS but the specific sources of this variability remain unknown. Further investigation to identify the factors responsible for these differences may lead to mechanism-based rather than symptom-based therapies and should therefore be a high research priority.


Subject(s)
Williams Syndrome , Cognition , Elastin , Humans , Transcription Factors , Williams Syndrome/diagnosis , Williams Syndrome/genetics
4.
Curr Opin Genet Dev ; 68: 41-48, 2021 06.
Article in English | MEDLINE | ID: mdl-33610060

ABSTRACT

Copy number variation (CNV) at 7q11.23 causes distinct disorders with both contrasting and overlapping phenotypic features of some but not all of the genes encompassed by the CNV. The spectrum of cognitive disabilities, psychopathology and altered behaviours associated with 7q11.23 CNV provides a tantalizing window of opportunity to better understand the molecular bases for complex human cognitive function and social behaviour. Study of individuals with atypical CNVs has narrowed the field of candidate genes, and the generation of mouse models has allowed further insight into their functions. Recent research has used high-throughput genomics techniques to interrogate the transcriptome and methylome, and initial strategies to correct gene transcription levels, pathophysiology and cognitive and behavioural phenotypes show promise.


Subject(s)
DNA Copy Number Variations , Epigenome , Gene Deletion , Gene Duplication , Neurodevelopmental Disorders/genetics , Transcriptome , Chromosomes, Human, Pair 7 , Cognition , Genetic Association Studies , Genomics/methods , Humans , Social Behavior , Williams Syndrome/genetics
5.
Orphanet J Rare Dis ; 16(1): 6, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407644

ABSTRACT

BACKGROUND: 7q11.23 duplication (Dup7) is one of the most frequent recurrent copy number variants (CNVs) in individuals with autism spectrum disorder (ASD), but based on gold-standard assessments, only 19% of Dup7 carriers have ASD, suggesting that additional genetic factors are necessary to manifest the ASD phenotype. To assess the contribution of additional genetic variants to the Dup7 phenotype, we conducted whole-genome sequencing analysis of 20 Dup7 carriers: nine with ASD (Dup7-ASD) and 11 without ASD (Dup7-non-ASD). RESULTS: We identified three rare variants of potential clinical relevance for ASD: a 1q21.1 microdeletion (Dup7-non-ASD) and two deletions which disrupted IMMP2L (one Dup7-ASD, one Dup7-non-ASD). There were no significant differences in gene-set or pathway variant burden between the Dup7-ASD and Dup7-non-ASD groups. However, overall intellectual ability negatively correlated with the number of rare loss-of-function variants present in nervous system development and membrane component pathways, and adaptive behaviour standard scores negatively correlated with the number of low-frequency likely-damaging missense variants found in genes expressed in the prenatal human brain. ASD severity positively correlated with the number of low frequency loss-of-function variants impacting genes expressed at low levels in the brain, and genes with a low level of intolerance. CONCLUSIONS: Our study suggests that in the presence of the same pathogenic Dup7 variant, rare and low frequency genetic variants act additively to contribute to components of the overall Dup7 phenotype.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/genetics , Chromosome Deletion , DNA Copy Number Variations/genetics , Female , Genomics , Humans , Phenotype , Pregnancy
6.
Mol Neurobiol ; 56(5): 3313-3325, 2019 May.
Article in English | MEDLINE | ID: mdl-30120731

ABSTRACT

Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7q11.23) are neurodevelopmental disorders caused by the deletion and duplication, respectively, of ~ 25 protein-coding genes on chromosome 7q11.23. The general transcription factor 2I (GTF2I, protein TFII-I) is one of these proteins and has been implicated in the neurodevelopmental phenotypes of WS and Dup7q11.23. Here, we investigated the effect of copy number alterations in Gtf2i on neuronal maturation and intracellular calcium entry mechanisms known to be associated with this process. Mice with a single copy of Gtf2i (Gtf2i+/Del) had increased axonal outgrowth and increased TRPC3-mediated calcium entry upon carbachol stimulation. In contrast, mice with 3 copies of Gtf2i (Gtf2i+/Dup) had decreases in axon outgrowth and in TRPC3-mediated calcium entry. The underlying mechanism was that TFII-I did not affect TRPC3 protein expression, while it regulated TRPC3 membrane translocation. Together, our results provide novel functional insight into the cellular mechanisms that underlie neuronal maturation in the context of the 7q11.23 disorders.


Subject(s)
Neurons/metabolism , TRPC Cation Channels/metabolism , Transcription Factors, TFII/metabolism , Animals , Axons/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Chromosome Aberrations , Disease Models, Animal , Mice , Neurites/metabolism , Phenotype , Time Factors
7.
Neuroimage ; 163: 220-230, 2017 12.
Article in English | MEDLINE | ID: mdl-28882630

ABSTRACT

MRI is a powerful modality to detect neuroanatomical differences that result from mutations and treatments. Knowing which genes drive these differences is important in understanding etiology, but candidate genes are often difficult to identify. We tested whether spatial gene expression data from the Allen Brain Institute can be used to inform us about genes that cause neuroanatomical differences. For many single-gene-mutation mouse models, we found that affected neuroanatomy was not strongly associated with the spatial expression of the altered gene and there are specific caveats for each model. However, among models with significant neuroanatomical differences from their wildtype controls, the mutated genes had preferential spatial expression in affected neuroanatomy. In mice exposed to environmental enrichment, candidate genes could be identified by a genome-wide search for genes with preferential spatial expression in the altered neuroanatomical regions. These candidates have functions related to learning and plasticity. We demonstrate that spatial gene expression of single-genes is a poor predictor of altered neuroanatomy, but altered neuroanatomy can identify candidate genes responsible for neuroanatomical phenotypes.


Subject(s)
Brain/anatomy & histology , Animals , Disease Models, Animal , Genetic Association Studies , Mice , Mice, Inbred C57BL , Mutation , Phenotype
8.
Diabetes ; 65(9): 2529-39, 2016 09.
Article in English | MEDLINE | ID: mdl-27338739

ABSTRACT

Gestational diabetes mellitus (GDM) affects 3-14% of pregnancies, with 20-50% of these women progressing to type 2 diabetes (T2D) within 5 years. This study sought to develop a metabolomics signature to predict the transition from GDM to T2D. A prospective cohort of 1,035 women with GDM pregnancy were enrolled at 6-9 weeks postpartum (baseline) and were screened for T2D annually for 2 years. Of 1,010 women without T2D at baseline, 113 progressed to T2D within 2 years. T2D developed in another 17 women between 2 and 4 years. A nested case-control design used 122 incident case patients matched to non-case patients by age, prepregnancy BMI, and race/ethnicity. We conducted metabolomics with baseline fasting plasma and identified 21 metabolites that significantly differed by incident T2D status. Machine learning optimization resulted in a decision tree modeling that predicted T2D incidence with a discriminative power of 83.0% in the training set and 76.9% in an independent testing set, which is far superior to measuring fasting plasma glucose levels alone. The American Diabetes Association recommends T2D screening in the early postpartum period via oral glucose tolerance testing after GDM, which is a time-consuming and inconvenient procedure. Our metabolomics signature predicted T2D incidence from a single fasting blood sample. This study represents the first metabolomics study of the transition from GDM to T2D validated in an independent testing set, facilitating early interventions.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Diabetes, Gestational/epidemiology , Adult , Blood Glucose/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Diabetes, Gestational/blood , Female , Glucose Tolerance Test , Humans , Incidence , Middle Aged , Postpartum Period/blood , Pregnancy , Prospective Studies , Young Adult
9.
Mol Brain ; 8(1): 77, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26603386

ABSTRACT

BACKGROUND: Williams-Beuren Syndrome (WBS) is caused by the microdeletion of approximately 25 genes on chromosome 7q11.23, and is characterized by a spectrum of cognitive and behavioural features. RESULTS: We generated cortical neurons from a WBS individual and unaffected (WT) control by directed differentiation of induced pluripotent stem cells (iPSCs). Single cell mRNA analyses and immunostaining demonstrated very efficient production of differentiated cells expressing markers of mature neurons of mixed subtypes and from multiple cortical layers. We found that there was a profound alteration in action potentials, with significantly prolonged WBS repolarization times and a WBS deficit in voltage-activated K(+) currents. Miniature excitatory synaptic currents were normal, indicating that unitary excitatory synaptic transmission was not altered. Gene expression profiling identified 136 negatively enriched gene sets in WBS compared to WT neurons including gene sets involved in neurotransmitter receptor activity, synaptic assembly, and potassium channel complexes. CONCLUSIONS: Our findings provide insight into gene dysregulation and electrophysiological defects in WBS patient neurons.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Models, Biological , Neurons/pathology , Williams Syndrome/pathology , Action Potentials , Cell Differentiation , Cell Shape , Down-Regulation , Gene Expression Profiling , Hemizygote , Humans , Phenotype , Potassium Channels/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Williams Syndrome/genetics , Williams Syndrome/physiopathology
10.
eNeuro ; 2(2)2015.
Article in English | MEDLINE | ID: mdl-26464974

ABSTRACT

Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src (thl/thl) ) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src (thl/thl) mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I.

11.
Am J Med Genet A ; 167A(12): 2916-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26333794

ABSTRACT

In order to describe the physical characteristics, medical complications, and natural history of classic 7q11.23 duplication syndrome [hereafter Dup7 (MIM 609757)], reciprocal duplication of the region deleted in Williams syndrome [hereafter WS (MIM 194050)], we systematically evaluated 53 individuals aged 1.25-21.25 years and 11 affected adult relatives identified in cascade testing. In this series, 27% of probands with Dup7 had an affected parent. Seven of the 26 de novo duplications that were examined for inversions were inverted; in all seven cases one of the parents had the common inversion polymorphism of the WS region. We documented the craniofacial features of Dup7: brachycephaly, broad forehead, straight eyebrows, broad nasal tip, low insertion of the columella, short philtrum, thin upper lip, minor ear anomalies, and facial asymmetry. Approximately 30% of newborns and 50% of older children and adults had macrocephaly. Abnormalities were noted on neurological examination in 88.7% of children, while 81.6% of MRI studies showed structural abnormalities such as decreased cerebral white matter volume, cerebellar vermis hypoplasia, and ventriculomegaly. Signs of cerebellar dysfunction were found in 62.3%, hypotonia in 58.5%, Developmental Coordination Disorder in 74.2%, and Speech Sound Disorder in 82.6%. Behavior problems included anxiety disorders, ADHD, and oppositional disorders. Medical problems included seizures, 19%; growth hormone deficiency, 9.4%; patent ductus arteriosus, 15%; aortic dilation, 46.2%; chronic constipation, 66%; and structural renal anomalies, 18%. We compare these results to the WS phenotype and offer initial recommendations for medical evaluation and surveillance of individuals who have Dup7.


Subject(s)
Williams Syndrome/etiology , Adolescent , Child , Child, Preschool , Chromosomes, Human, Pair 7 , Developmental Disabilities/etiology , Developmental Disabilities/genetics , Face/abnormalities , Female , Humans , Infant , Male , Megalencephaly , Pregnancy , Pregnancy Complications/genetics , Williams Syndrome/genetics , Young Adult
12.
Am J Hum Genet ; 97(2): 216-27, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26166478

ABSTRACT

Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Gene Dosage/genetics , DNA Primers/genetics , Gene Frequency , Humans , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Statistics, Nonparametric , Williams Syndrome
13.
Am J Med Genet A ; 167(7): 1436-50, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25900101

ABSTRACT

To begin to delineate the psychological characteristics associated with classic 7q11.23 duplication syndrome (duplication of the classic Williams syndrome region; hereafter classic Dup7), we tested 63 children with classic Dup7 aged 4-17 years. Sixteen toddlers aged 18-45 months with classic Dup7 and 12 adults identified by cascade testing also were assessed. For the child group, median General Conceptual Ability (similar to IQ) on the Differential Ability Scales-II was 85.0 (low average), with a range from severe disability to high average ability. Median reading and mathematics achievement standard scores were at the low average to average level, with a range from severe impairment to high average or superior ability. Adaptive behavior was considerably more limited; median Scales of Independent Behavior-Revised Broad Independence standard score was 62.0 (mild impairment), with a range from severe adaptive impairment to average adaptive ability. Anxiety disorders were common, with 50.0% of children diagnosed with Social Phobia, 29.0% with Selective Mutism, 12.9% with Separation Anxiety Disorder, and 53.2% with Specific Phobia. In addition, 35.5% were diagnosed with Attention Deficit/Hyperactivity Disorder and 24.2% with Oppositional Defiant Disorder or Disruptive Behavior Disorder-Not Otherwise Specified. 33.3% of the children screened positive for a possible Autism Spectrum Disorder and 82.3% were diagnosed with Speech Sound Disorder. We compare these findings to previously reported results for children with Williams syndrome and argue that genotype/phenotype studies involving the Williams syndrome region offer important opportunities to understand the contribution of genes in this region to common disorders affecting the general population.


Subject(s)
Adaptation, Psychological/physiology , Anxiety Disorders/psychology , Attention Deficit Disorder with Hyperactivity/psychology , Attention Deficit and Disruptive Behavior Disorders/psychology , Williams Syndrome/psychology , Adolescent , Adult , Autism Spectrum Disorder/diagnosis , Child , Child, Preschool , Humans , Infant , Intelligence Tests , Speech Sound Disorder/diagnosis , Williams Syndrome/genetics
14.
J Bone Miner Res ; 29(6): 1412-23, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24443344

ABSTRACT

By using a genome-wide N-ethyl-N-nitrosourea (ENU)-induced dominant mutagenesis screen in mice, a founder with low bone mineral density (BMD) was identified. Mapping and sequencing revealed a T to C transition in a splice donor of the collagen alpha1 type I (Col1a1) gene, resulting in the skipping of exon 9 and a predicted 18-amino acid deletion within the N-terminal region of the triple helical domain of Col1a1. Col1a1(Jrt) /+ mice were smaller in size, had lower BMD associated with decreased bone volume/tissue volume (BV/TV) and reduced trabecular number, and furthermore exhibited mechanically weak, brittle, fracture-prone bones, a hallmark of osteogenesis imperfecta (OI). Several markers of osteoblast differentiation were upregulated in mutant bone, and histomorphometry showed that the proportion of trabecular bone surfaces covered by activated osteoblasts (Ob.S/BS and N.Ob/BS) was elevated, but bone surfaces undergoing resorption (Oc.S/BS and N.Oc/BS) were not. The number of bone marrow stromal osteoprogenitors (CFU-ALP) was unaffected, but mineralization was decreased in cultures from young Col1a1(Jrt) /+ versus +/+ mice. Total collagen and type I collagen content of matrices deposited by Col1a1(Jrt) /+ dermal fibroblasts in culture was ∼40% and 30%, respectively, that of +/+ cells, suggesting that mutant collagen chains exerted a dominant negative effect on type I collagen biosynthesis. Mutant collagen fibrils were also markedly smaller in diameter than +/+ fibrils in bone, tendon, and extracellular matrices deposited by dermal fibroblasts in vitro. Col1a1(Jrt) /+ mice also exhibited traits associated with Ehlers-Danlos syndrome (EDS): Their skin had reduced tensile properties, tail tendon appeared more frayed, and a third of the young adult mice had noticeable curvature of the spine. Col1a1(Jrt) /+ is the first reported model of combined OI/EDS and will be useful for exploring aspects of OI and EDS pathophysiology and treatment.


Subject(s)
Disease Models, Animal , Ehlers-Danlos Syndrome/complications , Osteogenesis Imperfecta/complications , Absorptiometry, Photon , Alternative Splicing/genetics , Amino Acid Sequence , Animals , Base Sequence , Bone Matrix/pathology , Bone Remodeling , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Bone and Bones/ultrastructure , Calcification, Physiologic , Collagen Type I/chemistry , Collagen Type I/genetics , Collagen Type I/ultrastructure , Collagen Type I, alpha 1 Chain , Ehlers-Danlos Syndrome/physiopathology , Femur/pathology , Male , Mice , Molecular Sequence Data , Mutation/genetics , Osteogenesis Imperfecta/physiopathology , Protein Structure, Tertiary , Stromal Cells/metabolism , Stromal Cells/pathology
15.
PLoS One ; 8(9): e75472, 2013.
Article in English | MEDLINE | ID: mdl-24086539

ABSTRACT

Utilizing ENU mutagenesis, we identified a mutant mouse with elevated platelets. Genetic mapping localized the mutation to an interval on chromosome 19 that encodes the Jak2 tyrosine kinase. We identified a A3056T mutation resulting in a premature stop codon within exon 19 of Jak2 (Jak2(K915X)), resulting in a protein truncation and functionally inactive enzyme. This novel platelet phenotype was also observed in mice bearing a hemizygous targeted disruption of the Jak2 locus (Jak2(+/-)). Timed pregnancy experiments revealed that Jak2(K915X/K915X) and Jak2(-/-) displayed embryonic lethality; however, Jak2(K915X/K915X) embryos were viable an additional two days compared to Jak2(-/-) embryos. Our data suggest that perturbing JAK2 activation may have unexpected consequences in elevation of platelet number and correspondingly, important implications for treatment of hematological disorders with constitutive Jak2 activity.


Subject(s)
Blood Platelets/cytology , Janus Kinase 2/genetics , Phenotype , Animals , Blotting, Western , Chromosome Mapping , Ethylnitrosourea , Fluorouracil , Genotype , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutagenesis/genetics , Phenylhydrazines , Point Mutation/genetics , Sequence Analysis, DNA
16.
Am J Hum Genet ; 92(2): 210-20, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23332918

ABSTRACT

Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3'AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future.


Subject(s)
Exons/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Proteins/chemistry , Proteins/genetics , Sequence Deletion/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Base Sequence , Child , Child, Preschool , Cytoskeletal Proteins , Facies , Female , Humans , Infant , Male , Molecular Sequence Data , Phenotype , Protein Isoforms/chemistry , Protein Isoforms/genetics , Suppression, Genetic , Syndrome , Transcription Factors , Young Adult , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
17.
J Cell Biochem ; 113(7): 2432-41, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22573557

ABSTRACT

X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies.


Subject(s)
Bone and Bones/pathology , Disease Models, Animal , Familial Hypophosphatemic Rickets , Genetic Diseases, X-Linked , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Point Mutation , Adaptor Proteins, Signal Transducing , Animals , Base Sequence , Bone Marrow Cells , Bone and Bones/metabolism , Calcification, Physiologic/genetics , Calcification, Physiologic/physiology , Cells, Cultured , Chromosome Mapping , Ethylnitrosourea , Extracellular Matrix Proteins/biosynthesis , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/metabolism , Familial Hypophosphatemic Rickets/pathology , Female , Fibroblast Growth Factor-23 , Glycoproteins/biosynthesis , Integrin-Binding Sialoprotein/biosynthesis , Intercellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C57BL , Mutagens/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocalcin/biosynthesis , Phosphoproteins/biosynthesis , RNA, Messenger/biosynthesis , Sequence Analysis, DNA , Stromal Cells
18.
Am J Hum Genet ; 90(6): 1064-70, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22578324

ABSTRACT

Duplication (dup7q11.23) and deletion (Williams syndrome) of chromosomal region 7q11.23 cause neurodevelopmental disorders with contrasting anxiety phenotypes. We found that 30% of 4- to 12-year-olds with dup7q11.23 but fewer than 5% of children with WS or in the general population met diagnostic criteria for a separation-anxiety disorder. To address the role of one commonly duplicated or deleted gene in separation anxiety, we compared mice that had varying numbers of Gtf2i copies. Relative to mouse pups with one or two Gtf2i copies, pups with additional Gtf2i copies showed significantly increased maternal separation-induced anxiety as measured by ultrasonic vocalizations. This study links the copy number of a single gene from 7q11.23 to separation anxiety in both mice and humans, highlighting the utility of mouse models in dissecting specific gene functions for genomic disorders that span many genes. This study also offers insight into molecular separation-anxiety pathways that might enable the development of targeted therapeutics.


Subject(s)
Anxiety, Separation/genetics , Gene Duplication , Transcription Factors, TFII/genetics , Animals , Child , Child, Preschool , Chromosomes, Human, Pair 7 , Female , Gene Deletion , Humans , Male , Mice , Models, Genetic , Phenotype , Time Factors , Williams Syndrome/genetics
19.
Exp Hematol ; 40(1): 48-60, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21924221

ABSTRACT

The ability of random mutagenesis techniques to annotate the mammalian genome can be hampered due to genetic redundancy and compensatory pathways that mask heterozygous mutations under homeostatic conditions. The objective of this study was to devise a pharmacologically sensitized screen using the chemotherapeutic drug, 5-fluorouracil (5FU), to induce cytopenia. 5FU dose was optimized in the 129/SvImJ, C57BL/6J, BALB/cJ, and C3H/HeJ strains of laboratory mice. N-ethyl-N-nitrosourea (ENU) mutagenesis was performed on 129/SvImJ males and phenotypic variants were identified by backcrossing on to the C57BL/6J background. G1 animals were challenged with 100 µg/g 5FU and phenodeviants with altered platelet recovery were monitored. Of 546 G1 animals tested, 15 phenodeviants were identified that displayed increased baseline platelet number, a platelet overshoot, or delayed platelet recovery, thereby demonstrating the utility of this approach for uncovering mutations in megakaryocyte and platelet development. Four G1 mice were selected for further analysis. The phenotypes were heritable in all four strains and genetic mapping identified a chromosome location in two of the three G2 lines tested. In conclusion, our group has developed a sensitized random mutagenesis screen utilizing 5FU and has shown that the strain combination of 129/SvImJ × C57BL/6J is robust for identification of founder lines with defects in megakaryocyte and platelet development.


Subject(s)
Antineoplastic Agents/pharmacology , Ethylnitrosourea/pharmacology , Fluorouracil/pharmacology , Mutagenesis/drug effects , Mutation/genetics , Thrombocytopenia/chemically induced , Thrombopoiesis/genetics , Animals , Female , Male , Mice , Mice, 129 Strain , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mutagenesis/genetics , Thrombopoiesis/drug effects
20.
PLoS One ; 6(8): e23868, 2011.
Article in English | MEDLINE | ID: mdl-21909369

ABSTRACT

BACKGROUND: Williams-Beuren Syndrome (WBS) is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold) and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression. CONCLUSIONS/SIGNIFICANCE: We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.


Subject(s)
Brain/growth & development , Brain/metabolism , Gene Expression Regulation, Developmental , Muscle Proteins/deficiency , Nuclear Proteins/deficiency , Trans-Activators/deficiency , 3' Untranslated Regions/genetics , Animals , Cell Line , Gene Knockdown Techniques , Genetic Association Studies , Mice , Mice, Knockout , Muscle Proteins/genetics , Muscle Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , RNA, Small Interfering/metabolism , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...