Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiome ; 19(1): 30, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715076

ABSTRACT

BACKGROUND: Soil microbial communities are difficult to measure and critical to soil processes. The bulk soil microbiome is highly diverse and spatially heterogeneous, which can make it difficult to detect and monitor the responses of microbial communities to differences or changes in management, such as different crop rotations in agricultural research. Sampling a subset of actively growing microbes should promote monitoring how soil microbial communities respond to management by reducing the variation contributed by high microbial spatial and temporal heterogeneity and less active microbes. We tested an in-growth bag method using sterilized soil in root-excluding mesh, "sterile sentinels," for the capacity to differentiate between crop rotations. We assessed the utility of different incubation times and compared colonized sentinels to concurrently sampled bulk soils for the statistical power to differentiate microbial community composition in low and high diversity crop rotations. We paired this method with Oxford Nanopore MinION sequencing to assess sterile sentinels as a standardized, fast turn-around monitoring method. RESULTS: Compared to bulk soil, sentinels provided greater statistical power to distinguish between crop rotations for bacterial communities and equivalent power for fungal communities. The incubation time did not affect the statistical power to detect treatment differences in community composition, although longer incubation time increased total biomass. Bulk and sentinel soil samples contained shared and unique microbial taxa that were differentially abundant between crop rotations. CONCLUSIONS: Overall, compared to bulk soils, the sentinels captured taxa with copiotrophic or ruderal traits, and plant-associated taxa. The sentinels show promise as a sensitive, scalable method to monitor soil microbial communities and provide information complementary to traditional soil sampling.

2.
Glob Chang Biol ; 30(5): e17298, 2024 May.
Article in English | MEDLINE | ID: mdl-38712640

ABSTRACT

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.


Subject(s)
Climate Change , Crops, Agricultural , Zea mays , Crops, Agricultural/growth & development , Zea mays/growth & development , North America , Europe , Edible Grain/growth & development , Agriculture/methods , Biodiversity , Crop Production/methods
3.
Mycorrhiza ; 29(3): 227-235, 2019 May.
Article in English | MEDLINE | ID: mdl-30868248

ABSTRACT

Arbuscular mycorrhizal (AM) fungi are considered to be a key group of soil organisms for assessments of soil biological properties and developing relationships among crop production management practices, soil properties, crop performance, and ecosystem services. In a field study of cover crop treatments established during the transition from small grains to corn (Zea mays L), we assessed multiple measures of AM fungal responses to the management treatments: soil propagule numbers, biomass via lipid biomarkers, and root colonization extent. Our objectives were to determine response variables that reliably distinguished cover crop treatments and formed consistent relationships with grain yield, plant biomass, and mineral nutrient concentrations of the following corn crop. The number of soil AM fungal propagules and amount of the NLFA biomarker C16:1cis11 measured on fall-collected soils most consistently and significantly responded to fall cover crop treatments. Neither of these measures of soil inoculum potential was strongly related to measures of crop performance. The PLFA biomarker C16:1cis11 was marginally responsive to cover crop but did not strongly relate to crop performance parameters. Corn root colonization by AM fungi was not significantly affected by cover crop treatment, but significant negative relationships were found between root colonization and grain N concentration and plant biomass at maturity. In contrast, a significant positive relationship between root colonization and plant N concentration at the 6-leaf stage was found. Understanding the relative effectiveness and limitations of AM fungal response variables will inform their application in field studies of agricultural management practices.


Subject(s)
Agriculture , Mycorrhizae/physiology , Plant Roots/microbiology , Soil Microbiology , Biomass , Crop Production , Crops, Agricultural/microbiology , Ecosystem , Soil , Zea mays/growth & development , Zea mays/microbiology
4.
J Environ Qual ; 47(5): 1146-1154, 2018 09.
Article in English | MEDLINE | ID: mdl-30272788

ABSTRACT

Excessive crop residue returned to the soil hinders farm operations, but residue removal can affect soil quality. In contrast, cover cropping can return additional residue to the soil and improve soils and environmental quality compared with no cover cropping. Residue and cover crop impacts on soil surface greenhouses gas (GHG) emissions are undetermined and site specific. Thus, the present study was conducted to investigate the impacts of corn ( L.) residue management and cover cropping on GHG fluxes. The fluxes were measured from 2013 to 2015 using static chamber under corn and soybean [ (L.) Merr.] rotation initiated in 2000 at Brookings, SD. Treatments included two residue management levels (residue returned [RR] and residue not returned [RNR]) and two cover cropping (cover crops [CC] and no cover crops [NCC]). Results showed that RR under corn and soybean phases significantly reduced cumulative CO fluxes (2681.3 kg ha in corn and 2419.8 kg ha in soybeans) compared with RNR (3331.0 kg ha in corn and 2755.0 kg ha in soybeans) in 2013. The RR emitted significantly less cumulative NO fluxes than RNR from both the phases in 2013 and 2014, but not in 2015. The CC treatment had significantly lower cumulative NO fluxes than the NCC for corn and soybean phases in 2013 and 2014. We conclude that crop residue retention and cover cropping can mitigate the GHG emissions compared with residue removal and no cover cropping.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Environmental Monitoring , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Soil , Glycine max , Zea mays
5.
Sci Rep ; 7(1): 15709, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29146930

ABSTRACT

To evaluate crop rotation effects on maize seedling performance and its associated microbiome, maize plants were grown in the greenhouse in soils preceded by either maize, pea, soybean or sunflower. Soils originated from a replicated field experiment evaluating different four-year rotation combinations. In the greenhouse, a stressor was introduced by soil infestation with western corn rootworm (WCR) or Fusarium graminearum. Under non-infested conditions, maize seedlings grown in soils preceded by sunflower or pea had greater vigor. Stress with WCR or F. graminearum resulted in significant root damage. WCR root damage was equivalent for seedlings regardless of soil provenance; whereas F. graminearum root damage was significantly lower in maize grown in soils preceded by sunflower. Infestation with WCR affected specific microbial taxa (Acinetobacter, Smaragdicoccus, Aeromicrobium, Actinomucor). Similarly, F. graminearum affected fungal endophytes including Trichoderma and Endogone. In contrast to the biological stressors, rotation sequence had a greater effect on rhizosphere microbiome composition, with larger effects observed for fungi compared to bacteria. In particular, relative abundance of Glomeromycota was significantly higher in soils preceded by sunflower or maize. Defining the microbial players involved in crop rotational effects in maize will promote selection and adoption of favorable crop rotation sequences.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Microbiota , Rhizosphere , Seedlings/growth & development , Zea mays/growth & development , Animals , Bacteria/metabolism , Biodiversity , Coleoptera/physiology , Crops, Agricultural/microbiology , Crops, Agricultural/parasitology , Fungi/physiology , Hybrid Vigor , Plant Roots/anatomy & histology , Plant Roots/microbiology , Seedlings/microbiology , Seedlings/parasitology , Soil Microbiology , Zea mays/microbiology , Zea mays/parasitology
6.
J Econ Entomol ; 98(6): 2020-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16539128

ABSTRACT

Planting date effects on arthropod infestation and viral plant disease are undocumented for winter wheat, Triticum aestivum L., in South Dakota and the northern Great Plains. Winter wheat was planted over three dates (early, middle, and late; generally from late August to late September) to determine the effect on abundance of insect pests, incidence of plant damage, incidence of viral plant disease, and grain yield. The study was conducted simultaneously at two sites in South Dakota over three consecutive cropping seasons for a total of six site yr. Cereal aphids (Homoptera: Aphididae) were abundant in three site yr. Rhopalosiphum padi (L.), bird cherry-oat aphid, was the most abundant cereal aphid at the Brookings site, whereas Schizaphis graminum (Rondani), greenbug, predominated at Highmore. Aphid-days were greater in early versus late plantings. Aphid abundance in middle plantings depended on aphid species and site, but it usually did not differ from that in early plantings. Incidence of Barley yellow dwarf virus (family Luteoviridae, genus Luteovirus, BYDV) declined with later planting and was correlated with autumnal abundance of cereal aphids. Incidence of BYDV ranged from 24 to 81% among 1999 plantings and was < 8% in other years. Damage to seedling wheat by chewing insects varied for two site-years, with greater incidence in early and middle plantings. Wheat streak mosaic virus, spring infestations of cereal aphids, wheat stem maggot, and grasshoppers were insignificant. Yield at Brookings was negatively correlated with BYDV incidence but not cereal aphid abundance, whereas yield at Highmore was negatively correlated with aphid abundance but not BYDV incidence. Planting on 20 September or later reduced damage from chewing insects and reduced cereal aphid infestations and resulting BYDV incidence.


Subject(s)
Insecta/physiology , Plant Diseases/parasitology , Plant Diseases/virology , Triticum/parasitology , Triticum/virology , Animals , Plant Shoots , Seasons , Seedlings , South Dakota , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...