Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
ACS Infect Dis ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819951

ABSTRACT

Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, which poses a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semisynthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semisynthetic glycoconjugate vaccines contain an identical synthetic decasaccharide (M2 motif) antigen. This antigen is present in serotype A strains, which constitute 95% of the clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity toward M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced weakly opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). These findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. This antigen could serve as a component in a multivalent GXM motif vaccine.

2.
Carbohydr Polym ; 332: 121928, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431400

ABSTRACT

Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five­carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 â†’ 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.


Subject(s)
Lipopolysaccharides , Moraxella catarrhalis , Rabbits , Animals , Mice , Lipopolysaccharides/chemistry , Lipid A , Antibodies, Bacterial , Glycoconjugates , Oligosaccharides/chemistry , Glucose , Carrier Proteins
3.
bioRxiv ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38352552

ABSTRACT

Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, posing a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semi-synthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semi-synthetic glycoconjugate vaccines contain the identical synthetic decasaccharide (M2 motif) antigen. This motif is present in serotype A strains, which constitute 95% of clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity towards M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). While these findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. It could serve as a component in a multi-valent GXM motif vaccine, enhancing both strength and breadth of immune responses.

4.
Beilstein J Org Chem ; 20: 173-180, 2024.
Article in English | MEDLINE | ID: mdl-38318459

ABSTRACT

The synthesis of gram quantities of the TF antigen (ß-ᴅ-Gal-(1→3)-α-ᴅ-GalNAc) and its 3'-sulfated analogue with a TEG-N3 spacer attached is described. The synthesis of the TF antigen comprises seven steps, from a known N-Troc-protected galactosamine donor, with an overall yield of 31%. Both the spacer (85%) and the galactose moiety (79%) were introduced using thioglycoside donors in NIS/AgOTf-promoted glycosylation reactions. The 3'-sulfate was finally introduced through tin activation in benzene/DMF followed by treatment with a sulfur trioxide-trimethylamine complex in a 66% yield.

5.
Proc Natl Acad Sci U S A ; 121(7): e2315733121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38330012

ABSTRACT

Cryptococcus neoformans is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The C. neoformans' capsular polysaccharide and its shed exopolysaccharide function both as key virulence factors and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against C. neoformans infection. In this study, NOE and J-coupling values from NMR experiments were consistent with a converged structure of the synthetic decasaccharide, GXM10-Ac3, calculated from MD simulations. GXM10-Ac3 was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is a hexasaccharide with a three-residue α-mannan backbone, modified by ß-(1→2)-xyloses (Xyl) on the first two mannoses (Man) and a ß-(1→2)-glucuronic acid (GlcA) on the third Man. Combined NMR and MD analyses reveal that GXM10-Ac3 adopts an extended structure, with Xyl/GlcA branches alternating sides along the α-mannan backbone. O-acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac3 structure is uniformly represented throughout the polysaccharide. This derived GXM model displays high flexibility while maintaining a structural identity, yielding insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Mannans , Cryptococcus neoformans/chemistry , Polysaccharides/chemistry , Cryptococcosis/microbiology , Magnetic Resonance Spectroscopy , Antibodies, Monoclonal , Antibodies, Fungal
6.
ACS Infect Dis ; 10(2): 475-488, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-37856427

ABSTRACT

Antibodies play a vital role in the immune response to infectious diseases and can be administered passively to protect patients. In the case of Cryptococcus neoformans, a WHO critical priority fungal pathogen, infection results in antibodies targeting capsular glucuronoxylomannan (GXM). These antibodies yield protective, non-protective, and disease-enhancing outcomes when administered passively. However, it was unknown how these distinct antibodies recognized their antigens at the molecular level, leading to the hypothesis that they may target different GXM epitopes. To test this hypothesis, we constructed a microarray containing 26 glycans representative of those found in highly virulent cryptococcal strains and utilized it to study 16 well-characterized monoclonal antibodies. Notably, we found that protective and non-protective antibodies shared conserved reactivity to the M2 motif of GXM, irrespective of the strain used in infection or GXM-isolated to produce a conjugate vaccine. Here, only two antibodies, 12A1 and 18B7, exhibited diverse trivalent GXM motif reactivity. IgG antibodies associated with protective responses showed cross-reactivity to at least two GXM motifs. This molecular understanding of antibody binding epitopes was used to map the antigenic diversity of two Cryptococcus neoformans strains, which revealed the exceptional complexity of fungal capsular polysaccharides. A multi-GXM motif vaccine holds the potential to effectively address this antigenic diversity. Collectively, these findings underscore the context-dependent nature of antibody function and challenge the classification of anti-GXM epitopes as either "protective" or "non-protective".


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Antibodies, Fungal/metabolism , Cryptococcus neoformans/metabolism , Epitopes , Antibodies, Monoclonal , Polysaccharides
7.
bioRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37732210

ABSTRACT

Cryptococcus neoformans is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The C. neoformans capsular polysaccharide and shed exopolysaccharide functions both as a key virulence factor and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against C. neoformans infection. In this combined NMR and MD study, experimentally determined NOEs and J-couplings support a structure of the synthetic decasaccharide, GXM10-Ac3, obtained by MD. GXM10-Ac3 was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is characterized by a 6-residue α-mannan backbone repeating unit, consisting of a triad of α-(1→3)-mannoses, modified by ß-(1→2)-xyloses on the first two mannoses and a ß-(1→2)-glucuronic acid on the third mannose. The combined NMR and MD analyses reveal that GXM10-Ac3 adopts an extended structure, with xylose/glucuronic acid branches alternating sides along the α-mannan backbone. O-acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac3 structure is uniformly represented throughout the polysaccharide. This experimentally consistent GXM model displays high flexibility while maintaining a structural identity, yielding new insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.

8.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292721

ABSTRACT

The majority of the world population carry the gastric pathogen Helicobacter pylori. Fortunately, most individuals experience only low-grade or no symptoms, but in many cases the chronic inflammatory infection develops into severe gastric disease, including duodenal ulcer disease and gastric cancer. Here we report on a protective mechanism where H. pylori attachment and accompanying chronic mucosal inflammation can be reduced by antibodies that are present in a vast majority of H. pylori carriers. These antibodies block binding of the H. pylori attachment protein BabA by mimicking BabA's binding to the ABO blood group glycans in the gastric mucosa. However, many individuals demonstrate low titers of BabA blocking antibodies, which is associated with an increased risk for duodenal ulceration, suggesting a role for these antibodies in preventing gastric disease.

9.
Eur Respir J ; 61(5)2023 05.
Article in English | MEDLINE | ID: mdl-37080569

ABSTRACT

BACKGROUND: Mucin disulfide cross-links mediate pathologic mucus formation in muco-obstructive lung diseases. MUC-031, a novel thiol-modified carbohydrate compound, cleaves disulfides to cause mucolysis. The aim of this study was to determine the mucolytic and therapeutic effects of MUC-031 in sputum from patients with cystic fibrosis (CF) and mice with muco-obstructive lung disease (ßENaC-Tg mice). METHODS: We compared the mucolytic efficacy of MUC-031 and existing mucolytics (N-acetylcysteine (NAC) and recombinant human deoxyribonuclease I (rhDNase)) using rheology to measure the elastic modulus (G') of CF sputum, and we tested effects of MUC-031 on airway mucus plugging, inflammation and survival in ßENaC-Tg mice to determine its mucolytic efficacy in vivo. RESULTS: In CF sputum, compared to the effects of rhDNase and NAC, MUC-031 caused a larger decrease in sputum G', was faster in decreasing sputum G' by 50% and caused mucolysis of a larger proportion of sputum samples within 15 min of drug addition. Compared to vehicle control, three treatments with MUC-031 in 1 day in adult ßENaC-Tg mice decreased airway mucus content (16.8±3.2 versus 7.5±1.2 nL·mm-2, p<0.01) and bronchoalveolar lavage cells (73 833±6930 versus 47 679±7736 cells·mL-1, p<0.05). Twice-daily treatment with MUC-031 for 2 weeks also caused decreases in these outcomes in adult and neonatal ßENaC-Tg mice and reduced mortality from 37% in vehicle-treated ßENaC-Tg neonates to 21% in those treated with MUC-031 (p<0.05). CONCLUSION: MUC-031 is a potent and fast-acting mucolytic that decreases airway mucus plugging, lessens airway inflammation and improves survival in ßENaC-Tg mice. These data provide rationale for human trials of MUC-031 in muco-obstructive lung diseases.


Subject(s)
Cystic Fibrosis , Lung Diseases, Obstructive , Adult , Humans , Mice , Animals , Expectorants/therapeutic use , Sulfhydryl Compounds/pharmacology , Sulfhydryl Compounds/therapeutic use , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Sputum , Lung Diseases, Obstructive/drug therapy , Inflammation/pathology , Carbohydrates/pharmacology , Carbohydrates/therapeutic use , Lung
10.
Org Biomol Chem ; 21(12): 2545-2555, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36877217

ABSTRACT

Synthetic deoxy-fluoro-carbohydrate derivatives and seleno-sugars are useful tools in protein-carbohydrate interaction studies using nuclear magnetic resonance spectroscopy because of the presence of the 19F and 77Se reporter nuclei. Seven saccharides containing both these atoms have been synthesized, three monosaccharides, methyl 6-deoxy-6-fluoro-1-seleno-ß-D-galactopyranoside (1) and methyl 2-deoxy-2-fluoro-1-seleno-α/ß-D-galactopyranoside (2α and 2ß), and four disaccharides, methyl 4-O-(ß-D-galactopyranosyl)-2-deoxy-2-fluoro-1-seleno-ß-D-glucopyranoside (3), methyl 4-Se-(ß-D-galactopyranosyl)-2-deoxy-2-fluoro-4-seleno-ß-D-glucopyranoside (4), and methyl 4-Se-(2-deoxy-2-fluoro-α/ß-D-galactopyranosyl)-4-seleno-ß-D-glucopyranoside (5α and 5ß), the three latter compounds with an interglycosidic selenium atom. Selenoglycosides 1 and 3 were obtained from the corresponding bromo sugar by treatment with dimethyl selenide and a reducing agent, while compounds 2α/2ß, 4, and 5α/5ß were synthesized by the coupling of a D-galactosyl selenolate, obtained in situ from the corresponding isoselenouronium salt, with either methyl iodide or a 4-O-trifluoromethanesulfonyl D-galactosyl moiety. While benzyl ether protecting groups were found to be incompatible with the selenide linkage during deprotection, a change to acetyl esters afforded 4 in a 17% overall yield and over 9 steps from peracetylated D-galactosyl bromide. The synthesis of 5 was performed similarly, but the 2-fluoro substituent led to reduced stereoselectivity in the formation of the isoselenouronium salt (α/ß âˆ¼ 1 : 2.3). However, the ß-anomer of the uronium salt could be obtained almost pure (∼98%) by precipitation from the reaction mixture. The following displacement reaction occurred without anomerisation, affording, after deacetylation, pure 5ß.


Subject(s)
Galactose , Lactose , Disaccharides , Carbohydrate Conformation
11.
Chemistry ; 29(16): e202203672, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36562295

ABSTRACT

Infecting the stomach of almost 50 % of people, Helicobacter pylori is a causative agent of gastritis, peptic ulcers and stomach cancers. Interactions between bacterial membrane-bound lectin, Blood group Antigen Binding Adhesin (BabA), and human blood group antigens are key in the initiation of infection. Herein, the synthesis of a B-antigen hexasaccharide (B6) and a B-Lewis b heptasaccharide (BLeb7) and Bovine Serum Albumin glycoconjugates thereof is reported to assess the binding properties and preferences of BabA from different strains. From a previously reported trisaccharide acceptor a versatile key Lacto-N-tetraose tetrasaccharide intermediate was synthesized, which allowed us to explore various routes to the final targets, either via initial introduction of fucosyl residues followed by introduction of the B-determinant or vice versa. The first approach proved unsuccessful, whereas the second afforded the target structures in good yields. Protein conjugation using isothiocyanate methodology allowed us to reach high glycan loadings (up to 23 per protein) to mimic multivalent displays encountered in Nature. Protein glycoconjugate inhibition binding studies were performed with H. pylori strains displaying high or low affinity for Lewis b hexasaccharide structures showing that the binding to the high affinity strain was reduced due to the presence of the B-determinant in the Bleb7-conjugates and further reduced by the absence of the Lewis fucose residue in the B6-conjugate.


Subject(s)
Blood Group Antigens , Helicobacter Infections , Helicobacter pylori , Humans , Adhesins, Bacterial/chemistry , Stomach/microbiology , Blood Group Antigens/metabolism , Glycoconjugates/chemistry , Helicobacter Infections/microbiology
12.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L372-L389, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35762590

ABSTRACT

The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cysteamine/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , Pharmaceutical Preparations , SARS-CoV-2 , Sulfhydryl Compounds/pharmacology
13.
Org Biomol Chem ; 20(21): 4431-4440, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35587262

ABSTRACT

Investigation into Heliobacter pylori binding to Lewis b (Leb) antigens through the blood group antigen binding adhesion protein (BabA) requires structurally well-defined tools. A Leb hexasaccharide thioglycoside donor was chemically prepared through a linear approach starting from D-lactose. This donor can be used to attach reducing end linkers providing a range of options for conjugation techniques or to further extend the oligosaccharide structure. To evaluate its efficiency as a donor, it was coupled to a 6-OH GalNAc acceptor, producing an extended Leb-containing Tn mucin core structure in 84% yield, and to L-serine in 72% yield. The latter compound was subsequently functionalized with a photolabile diazirine linker and biotin, creating a Leb hexasaccharide structure-function tool suitable for lectin tagging interaction studies. This donor opens a wide range of possibilities for conjugation of Leb structures to produce a variety of chemical biology tools to assist in the study of these interactions.


Subject(s)
Mucins , Thioglycosides , Lewis Blood Group Antigens , Mucins/chemistry , Mucins/metabolism , Oligosaccharides/chemistry , Serine
14.
Carbohydr Res ; 512: 108515, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35134680

ABSTRACT

A library of sixteen compounds, 1-16, comprising all (mono-, di-, and tri-) 2-fluoro-2-deoxy-derivatives of the N-glycan core trimannoside α-D-Man-(1 â†’ 3)-[α-D-Man-(1 â†’ 6)]-D-Man, including the corresponding 2-fluoro-2-deoxy disaccharide part structures and the non-fluorinated parent compounds, have been synthesized as their α-methyl glycosides for use as tools in 19F NMR-based lectin-carbohydrate interaction studies. Two methyl 2-fluoro-2-deoxy-mannoside acceptors, 21 (3-OH) and 22 (6-OH), were constructed and used in combination with the corresponding non-fluorinated mannose acceptors, 24 (6-OH) and 25 (3-OH), the 2-fluoro-2-deoxy mannosyl bromide donor 18 and the non-fluorinated bromide donor 23 to efficiently afford the target di-and trisaccharides (disaccharides, 2-3 steps, 47-66% overall yield; trisaccharides, 4 steps, 25-40% overall yield).


Subject(s)
Glycosides , Trisaccharides , Carbohydrate Conformation , Disaccharides , Humans , Magnetic Resonance Spectroscopy , Mannose , Trisaccharides/chemistry
15.
Chembiochem ; 23(13): e202100327, 2022 07 05.
Article in English | MEDLINE | ID: mdl-34496130

ABSTRACT

A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.


Subject(s)
Nucleic Acids , Sugars , Carbohydrates/chemistry , Lectins/metabolism , Polysaccharides/chemistry
16.
Glycobiology ; 31(11): 1500-1509, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34735569

ABSTRACT

Tumor-associated glycolipids such as NeuGc GM3 are auspicious molecular targets in antineoplastic therapies and vaccine strategies. 14F7 is a monoclonal IgG1 with high clinical potential in cancer immunotherapy as it displays extraordinary specificity for NeuGc GM3, while it does not recognize the very similar, ubiquitous NeuAc GM3. Here we present the 2.3 Å crystal structure of the 14F7 antigen-binding domain (14F7 scFv) in complex with the NeuGc GM3 trisaccharide. Modeling analysis and previous mutagenesis data suggest that 14F7 may also bind to an alternative NeuGc GM3 conformation, not observed in the crystal structure. The most intriguing finding, however, was that a water molecule centrally placed in the complementarity-determining region directly mediates the specificity of 14F7 to NeuGc GM3. This has profound impact on the complexity of engineering in the binding site and provides an excellent example of the importance in understanding the water structure in antibody-antigen interactions.


Subject(s)
Antibodies, Monoclonal/immunology , Antineoplastic Agents/immunology , G(M3) Ganglioside/immunology , Water/chemistry , Antibodies, Monoclonal/isolation & purification , Antibody Specificity , Antigen-Antibody Reactions , G(M3) Ganglioside/chemical synthesis , G(M3) Ganglioside/chemistry , Models, Molecular , Molecular Structure
17.
Nature ; 598(7880): 332-337, 2021 10.
Article in English | MEDLINE | ID: mdl-34616040

ABSTRACT

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Subject(s)
Bacteroides/enzymology , Colon/metabolism , Colon/microbiology , Gastrointestinal Microbiome , Mucins/metabolism , Sulfatases/metabolism , Acetylgalactosamine/chemistry , Acetylgalactosamine/metabolism , Animals , Colon/chemistry , Crystallography, X-Ray , Female , Galactose/metabolism , Humans , Male , Mice , Models, Molecular , Substrate Specificity , Sulfatases/chemistry
18.
Org Process Res Dev ; 25(7): 1573-1578, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34305386

ABSTRACT

Palladium-catalyzed hydrogenolysis is often the final step in challenging natural product total syntheses and a key step in industrial processes producing fine chemicals. Here, we demonstrate that there is wide variability in the efficiency of commercial sources of palladium on carbon (Pd/C) resulting in significant differences in selectivity, reaction times, and yields. We identified the physicochemical properties of efficient catalysts for hydrogenolysis: (1) small Pd/PdO particle size (2) homogeneous distribution of Pd/PdO on the carbon support, and (3) palladium oxidation state are good predictors of catalytic efficiency. Now chemists can identify and predict a catalyst's efficiency prior to the use of valuable synthetic material and time.

19.
Org Biomol Chem ; 19(30): 6644-6649, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34263283

ABSTRACT

As part of a program to find new sialidases and determine their enzymatic specificity and catalytic activity, a library of 4-methylumbelliferyl sialic acid glycosides derivatised at the C-5 position were prepared from N-acetylneuraminic acid. Both α- and ß-4-methylumbelliferyl sialic acid glycosides were prepared in high yields and stereoselectivity. α-Anomers were accessed via reagent control by utilising additive CH3CN and TBAI, whereas the ß-anomers were synthesised through a diastereoselective addition reaction of iodine and the aglycone to the corresponding glycal followed by reduction of the resulting 3-iodo compounds. Both anomer-oriented synthetic pathways allow for gram-scale stereoselective syntheses of the desired C-5 modified neuraminic acid derivatives for use as tools to quantify the enzymatic activity and substrate specificity of known sialidases, and potential detection and investigation of novel sialidases.

20.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33514659

ABSTRACT

Classic antibody functions include opsonization, complement activation, and enhancement of cellular antimicrobial function. Antibodies can also have catalytic activity, although the contribution of catalysis to their biological functions has been more difficult to establish. With the ubiquity of catalytic antibodies against glycans virtually unknown, we sought to advance this knowledge. The use of a glycan microarray allowed epitope mapping of several monoclonal antibodies (mAbs) against the capsule of Cryptococcus neoformans From this, we designed and synthesized two glycan-based FRET probes, which we used to discover antibodies with innate glycosidase activity and analyze their enzyme kinetics, including mAb 2H1, the most efficient identified to date. The validity of the FRET assay was confirmed by demonstrating that the mAbs mediate glycosidase activity on intact cryptococcal capsules, as observed by a reduction in capsule diameter. Furthermore, the mAb 18B7, a glycosidase hydrolase, resulted in the appearance of reducing ends in the capsule as labeled by a hydroxylamine-armed fluorescent (HAAF) probe. Finally, we demonstrate that exposing C. neoformans cells to catalytic antibodies results in changes in complement deposition and increased phagocytosis by macrophages, suggesting that the antiphagocytic properties of the capsule have been impaired. Our results raise questions over the ubiquity of antibodies with catalytic activity against glycans and establish the utility of glycan-based FRET and HAAF probes as tools for investigating this activity.


Subject(s)
Antibodies, Catalytic/immunology , Antibodies, Fungal/immunology , Biological Assay , Cryptococcus neoformans/immunology , Fluorescence Resonance Energy Transfer , Polysaccharides/chemistry , Complement System Proteins/metabolism , Epitope Mapping , Kinetics , Macrophages/immunology , Models, Molecular , Molecular Probes/chemistry , Oligosaccharides/chemical synthesis , Oligosaccharides/chemistry , Peptides/chemistry , Phagocytosis , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...